
KYUNGPOOK Math. J. 56(2016), 1103-1113

http://dx.doi.org/10.5666/KMJ.2016.56.4.1103

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

On the Diameter, Girth and Coloring of the Strong Zero-
Divisor Graph of Near-rings

Prohelika Das
Department of Mathematics, Cotton College State University, Guwahati 781001,
Assam, India
e-mail : dasprohelika@yahoo.com

Abstract. In this paper, we study a directed simple graph Γs(N) for a near-ring N , where

the set V ∗(N) of vertices is the set of all left N -subsets of N with nonzero left annihilators

and for any two distinct vertices I, J ∈ V ∗(N), I is adjacent to J if and only if IJ = 0.

Here, we deal with the diameter, girth and coloring of the graph Γs(N). Moreover, we

prove a sufficient condition for occurrence of a regular element of the near-ring N in the

left annihilator of some vertex in the strong zero-divisor graph Γs(N).

1. Introduction

In this paper by a near-ring N , we mean a zero symmetric (right) near-ring
not necessarily containing 1. A subset I of N is left(right)N -subset of N if NI ⊆
I(IN ⊆ I) and I is invariant if it is both left as well as right N -subset of N . If I is
a left N -subset of N , then the ideal l(I) = {x ∈ N | xI = 0} is the left annihilator
of I. The set Zl = {n ∈ N | for some x ∈ N\{0}, nx = 0} [12] is the set of left
zero-divisors of N . We consider the strong zero-divisor graph Γs(N), where the set
V ∗(N) of vertices is the set of all left N -subsets of N with nonzero left annihilators
and for any two distinct vertices I, J ∈ V ∗(N), I is adjacent to J if and only if
IJ = 0. If I and J are singleton sets, then the strong graph Γs(N) reduced to the
graph Γ(N) of N where x(6= 0) ∈ N is adjacent to y(6= 0) ∈ N if and only if xy = 0.

The concept of zero-divisor graph of a commutative ring was first introduced by
Beck in [5]. Beck [5] was mainly interested in the coloring of the ring. This notion
was redefined in [3] and they proved that such a graph is always connected and
its diameter is always less than or equal to 3. Anderson and Mulay in [4] studied
diameter and girth of zero-divisor graph of a commutative ring. The notion of zero-
divisor graph was extended to a non-commutative ring [1] and various properties of
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diameter and girth were established. In [10], Redmond has generalised the notion of
zero-divisor graph. For an ideal I of a commutative ring R, Redmond [10] defined an
undirected graph ΓI(R) with vertices {x ∈ R \ I | xy ∈ I for some y ∈ R \ I} where
distinct vertices x and y are adjacent if and only if xy ∈ I. Behboodhi [6] studied
annihilator ideal graph dealing with the annihilators of ideals of a commutative
ring.

In this paper, we study the graph theoretic aspect of a near-ring N which is
a less symmetric algebraic structure with + and ., where both operations are non-
commutative. An element d ∈ N is distributive if d(n1 + n2) = dn1 + dn2 for any
n1, n2 ∈ N and Nd denotes the set of all distributive elements of N . If N = Nd and
(N,+) =< Nd >, then N is distributive and distributively generated, respectively.
For a distributive near-ring N with 1, the graph Γ(N) is the zero-divisor graph of
a non-commutative ring N .

For basic definitions and results related to near-ring, we would like to mention
Pilz [9].

Recall that a graph G is connected if there is a path between any two distinct
vertices and is complete if every two vertices are adjacent. The distance between
two distinct vertices x and y of G is the length of the shortest path from x to y and
is denoted by d(x, y). If no such path exists, then d(x, y) = ∞. The diameter of
the graph G is the sup{d(x, y)|x and y are distinct vertices of G} and is denoted by
diamG. The girth of G is the length of distance of the shortest cycle in G, denoted
by gr(G). If no such cycle, then gr(G) =∞.

A left N -subset I of N is nilpotent if there exists a positive integer n such that
In = 0 and In−1 6= 0. The near-ring N is strongly semi-prime if it has no nonzero
nilpotent invariant subsets. The notion of simple graph excludes the loops which is
compatible to the strongly semi-prime character of the near-ring. The graph that
we dealt here is a connected one and has diameter 3 or less, the proof of which
follows in alike way to that of the theorem 2.3 [3]. It is due to the proposition
1.3.2 [8], if a graph G has a cycle, then the gr(G) is less than 2diamG+ 1. In this
paper, we study diameter and girth of the strong zero-divisor graphs of near-rings.
Anderson [3] has conjectured that if a zero-divisor graph had a cycle, then its girth
was 3 or 4. Haevey Mudd and Jamson gave an elegant proof to the conjecture of
Anderson[3]. We establish a sufficient condition for diameter 3 for the graph Γs(N)
of the near-ring N . Existence of a cycle in the strong zero-divisor graph deserves
exclusive interest. We prove that in a strongly semi-prime near-ring, if Γs(N) has
a cycle with an invariant vertex, then gr(Γs(N)) ≤ 4.

Moreover, in this paper, we deal with coloring of Γs(N). The minimal num-
bers of colors so that no two adjacent elements of the graph G have same color is
the chromatic number of G and is denoted by χ(G). A clique of G is the max-
imal connected subgraph of it. The number of vertices in the largest clique in
the graph G is the cliqueG. Beck, [5] conjectured that χ(Γ(R)) = clique(Γ(R)).
But D.D.Anderson and M.Nasser [2] gave the counter example such as R =
Z4[[x, y, z]/(x2 − 2, y2 − 2, z2, 2x, 2y, 2z, xy, xz, yz − 2)] for which χ(Γ(R)) = 5 and
clique(Γ(R)) = 4. Beck [5]has proved characterisation of rings with finite chromatic
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number and showed that such rings have the ascending chain condition(acc) on an-
nihilators. We here deal with the strong zero-divisor graph Γs(N) having finite
chromatic number. A left N -subset(ideal) I of N is essential in N if for any non
zero left N -subset(ideal) A of N , I ∩ A 6= 0. We prove that chromatic number of
such a graph showing alike relation with the numbers of maximal annihilator ideals
as well as with that of essential annihilator ideals of the near-ring. Also we deal
with the strong zero-divisor graph Γs(N) having bipartite character, i.e., the set of
vertices of Γs(N) can be decomposed into two disjoint parts such that every edge
joints a vertex of one part to that of the other part. We establish that if Γs(N)
is bipartite where N is strongly semi-prime without unity, then N has exactly two
invariant subsets I1 and I2 (say) provided l(I1) and l(I2) are essential. In addition
to it we show that if Γs(N) is bipartite with nonzero nilpotent invariant subsets in
N , then Γs(N) is a star graph.

The following are some examples of strong zero-divisor graphs.
Example 1.1.

(1) Γs(Z4) ∼= Γ(Z4)

Γs(Z4) or Γ(Z4)

(2) Γs(Z2 × Z2) ∼= Γ(Z2 × Z2) ∼= Γs(Z6) (Z2 × Z2 � Z6)

Γs(Z2 × Z2), Γ(Z2 × Z2) or Γs(Z6)

(3) Γs(
Z3[x]
〈x2〉 ) ∼= Γs(

Z2[x,y]
〈x2,y2,xy〉 ) but Z3[x]

x2 � Z2[x,y]

〈x2,y2,xy〉

Γs(
Z3[x]

〈x2〉
) or Γs(

Z2[x,y]

〈x2,y2,xy〉
)
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(4) Γs(
Z4[x]
〈x2〉 ) � Γs(

Z2[x,y]
〈x2,xy,y2〉 ) (Z4[x]

〈x2〉
∼= Z2[x,y]
〈x2,xy,y2〉 )

Γs(
Z4[x]

〈x2〉
)

2. Main Results

In this section, we present results regarding diameter and girths of Γs(N) in
contrast to Γ(N) in some cases. We note that the vertex 0 is adjacent to every
other vertices which we exclude here for obvious reason.

A vertex I of Γs(N) is an invariant vertex if it is an invariant N subset of
the near-ring N . The right annihilator of a left N -subset I of N is r(I) = {x ∈
N | Ix = 0} which is a right N -subset of N , need not coincide to l(I) in general.
However in a strongly semi-prime near-ring N for an invariant subset I, Il(I) = 0
as (Il(I))2 = I(l(I)I)l(I) = 0 giving thereby l(I) ⊆ r(I). Similarly r(I) ⊆ l(I).
Thus we state the following lemma.

Lemma 2.1. Let N be a strongly semi-prime near-ring. Then for an invariant
subset I of N , l(I) = r(I).

For a subset I of N , l(I) 6= 0 may not imply l(I + J) 6= 0 for any subset J of
N . Below we present when it occurs.

Lemma 2.2. Let N be a near-ring such that the left annihilators are distributively
generated. If I be a left N -subset with l(I) 6= 0 and J ⊆ l(I) is a nilpotent left
N -subset of N , then l(I + J) 6= 0.

Proof. Since l(I) 6= 0, there exists an x(6= 0) ∈ N such that xI = 0. Now J is
nilpotent gives a positive integer m such that xJm = 0 and xJm−1 6= 0. Again
xJm−1J = xJm = 0 and xJm−1I = xJm−2JI = 0. Thus xJm−1(I + J) = 0 giving
thereby xJm−1 ⊆ l(I + J). Thus l(I + J) 6= 0. 2

Thus in this lemma, we see that the nilpotency of J ⊆ l(I) leads us to l(I+J) 6=
0. In the next, we present diameter of the strong zero-divisor graph Γs(N), where
N is a strongly semi-prime near-ring.

Theorem 2.3. Let N be a strongly semi-prime near-ring such that the left an-
nihilators are distributively generated. If there exists a nilpotent vertex J and an
invariant vertex I such that l(I + J) = 0, then diam(Γs(N)) = 3.

Proof. We give the proof in two steps such as

(i) Step1:
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Suppose d(I, J) = 2. Let M ∈ V ∗(N) be such that, I −→ M −→ J is a
directed path. Then IM = 0 and MJ = 0 which gives that M ∈ r(I) = l(I).
Now, M(I + J) = 0 gives that M( 6= 0) ⊆ l(I + J) . Thus l(I + J) 6= 0, a
contradiction.

(ii) Step2:

CaseI: If IJ 6= 0, consider M = l(I), N = l(J). Claim: I −→ M = l(I) −→
N = l(J) −→ J is a directed path. It is enough to show that l(I)l(J) = 0.
Suppose there exists an x ∈ l(I), y ∈ l(J) such that xy 6= 0. Now x ∈ l(I) =
r(I) gives Ixy = 0. Thus xy ∈ r(I) = l(I) gives xyI = 0. Again y ∈ l(J)
gives xyJ = 0. Now we get xy(I + J) = 0 which gives (0 6=)xy ∈ l(I + J), a
contradiction.

CaseII: If IJ = 0, then (I+J)2 ⊆ I2+J2. And l(I+J)2 = 0, as x ∈ l(I+J)2

gives x(I+J) ⊆ l(I+J) giving thereby x ∈ l(I+J) = 0. Since J is nilpotent,
qJ is also so where q ∈ l(I) with qJ2 6= 0. Now qJ ⊆ l(I) gives l(I + qJ) 6= 0
[Lemma 2.2]. Again I + qJ 6= J , otherwise I ⊆ J implies l(I +J) = l(J) 6= 0,
a contradiction. Hence I + qJ ,J are distinct and I + J = I + qJ + J which
gives l(I + qJ + J) = 0 and (I + qJ)J 6= 0. Hence d(I + qJ, J) = 3[caseI]. 2

Theorem 2.4. Let N be a strongly semi-prime near-ring such that the left anni-
hilators are distributively generated. If I is an invariant N -subset of N containing
a non nilpotent subset I1 with maximal left annihilators, then d(I, J) 6= 2 for any
J ⊆ l(I1) with l(I1) ∩ l(J) = 0.

Proof. Let y ∈ l(I1 + J), y =
∑
±di where l(I1 + J) =< S >, di ∈ S, a set of

distributive elements of N . Now di(I1 + J) = 0 gives (diI1 + diJ)i1 = 0 for each
i1 ∈ I1. Thus diI1i1 = 0 as J ⊆ l(I1) giving thereby di ∈ l(I1) = l(I1i1), since l(I1)
is maximal. Now we get diJ = 0 which gives di ∈ l(I1)∩ l(J) for each i. Thus y = 0
which gives l(I1 +J) = 0 giving thereby l(I +J) = 0. Hence d(I, J) 6= 2. [Theorem
2.3(i)] 2

Theorem 2.5. Let P1 = l(I1) and P2 = l(I2) be two prime ideals of N such that
P1 ∩ P2 = 0, where I1 and I2 are invariant subsets of N . Then I1I2 = (0) = I2I1.

Proof. For I1I2 6= 0, we get I1 * l(I2) = P2 and I2 * r(I1) = l(I1) = P1. Now
P1I1 ⊆ P2 gives P1 ⊆ P2 as I1 * P2 = l(I2) giving thereby P1 ∩ P2 = P1 6= 0, a
contradiction. Similarly, I2I1 = 0 2

Definition 2.6. Invariant associated of a near-ring N denoted by I − Ass(N) is
the collection of l(Ii)’s, where each l(Ii) is a prime ideal with invariant N -subset Ii
such that l(Ii) ∩ l(Ij) = 0 for i 6= j.

Corollary 2.7. If in a strongly semi-prime near-ring N , |(I − AssN)| ≥ 3, then
gr(Γs(N)) = 3.

Proof. Let I − Ass(N) = {P1, P2, P3}, then P1 = l(I1), P2 = l(I2) and P3 = l(I3)
for some invariant subsets I1, I2 and I3 respectively. Then I1I2 = 0, I2I3 = 0 and
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I3I1 = 0 [theorem 2.5]. Hence I1 −→ I2 −→ I3 −→ I
1

is a cycle of length 3. Thus
gr(Γs(N)) = 3. 2

Theorem 2.8. If |I −AssN | ≥ 5, then Γs(N) is not a planner graph.

Proof. Let I − AssN = {P1, P2, P3, P4, P5} where Pi = l(Ii)(say), 1 ≤ i ≤ 5. Here
IiIj = 0 for i 6= j [theorem 2.5]. Thus the graph Γs(N) contains Kuratowski’s first
graph. Hence Γs(N) is not planner. 2

Next we determine the girth of the graph Γs(N) of a stongly semi-prime near-
ring N if it has a cycle with at least one invariant vertex.

Theorem 2.9. Let N be a strongly semi-prime near-ring. If Γs(N) contains a
cycle with an invariant vertex in it, then gr(Γs(N)) ≤ 4.

Proof. Assume n = gr(Γs(N)) is 5, 6 or 7. Let I1 −→ I2 −→ I3..... −→ In −→
I1...(i) be a cycle with minimal length n. Let Ii be an invariant vertex. Now consider

the subgraph Γ
/
s(N) of Γs(N) spanned by the vertices I1, I2, ...., IiIi+2. If IiIi+2 6=

Ik for any k, 1 ≤ k ≤ n, then Ii−1 −→ Ii −→ Ii+1 −→ IiIi+2 −→ Ii−1, (i ≥ 2) is a
cycle of length 4. Let IiIi+2 = Ik for some k. Now we show the following.

(i) IiIi+2 6= Ii+1. If IiIi+2 = Ii+1, then (IiIi+2)Ii−1 = Ii+1Ii−1. Now Ii+1Ii−1 =
(IiIi+2)Ii−1 ⊆ IiIi−1 = 0, which gives Ii+1Ii−1 = 0. Thus Ii−1 −→ Ii −→
Ii+1 −→ Ii−1 is a cyclic, a contradiction to (i).

(ii) IiIi+2 6= Ii−1. For otherwise, Ii+1(IiIi+2) = Ii+1Ii−1 which gives Ii+1Ii−1 =
(Ii+1Ii)Ii+2 = 0. Thus Ii−1 −→ Ii −→ Ii+1 −→ Ii−1 is a cycle, a contradic-
tion to (i).

(iii) IiIi+2 6= Ii+3. If IiIi+2 = Ii+3, then we get Ii+3Ii+1 = (IiIi+2)Ii+1 ⊆
IiIi−1 = 0, gives the cycle Ii+1 −→ Ii+2 −→ Ii+3 −→ Ii+1, a contradiction.

Now IiIi+2 is adjacent to three distinct vertices Ii−1, Ii+1 and Ii+3. Thus there

exists an extra edge in Γ
/
s(N) which is not in the original cycle. Hence there must

exist a smaller cycle Γ
/
s(N), a contradiction. 2

Now we present coloring of the strong zero-divisor graph Γs(N) of N .

Theorem 2.10. Let N be a strongly semi-prime near-ring. If N has k number of
maximal ideals of the form l(Ii) where Ii’s are invariant subsets such that l(Ii) ∩
l(Ij) = 0 for i 6= j, 1 ≤ i, j ≤ k, then χ(Γs(N)) ≤ k + 1.

Proof. First we give k distinct colors to Ii’s and an extra color to 0. Here IiIj = 0
for i 6= j [Theorem 2.6]. Now we color the invariant vertices. If I(6= 0) be an
arbitrary invariant vertex, we give to I the color which is given to Ithn vertex,
where n is the minimal {i|l(I) * l(Ii)}. Let I and J be two invariant vertices
such that same color of Ik is given to them. Then l(I) * l(Ik) and l(J) * l(Ik).
If IJ = 0, then I ⊆ l(J) * l(Ik) and J ⊆ r(I) = l(I) * l(Ik) which leads to
IJ * l(Ik), a contradiction. Next we show that these k + 1 colors are enough
to color the whole graph. Let I(6= 0) be a left N -subset of N and I ∈ V ∗(N).
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Consider Il(J)( 6= 0) with some J ∈ V ∗(N). If Il(J) = 0 for any J ∈ V ∗(N), then
Il(In) = 0 for all n, 1 ≤ n ≤ k. Thus l(In) ⊆ l(I) gives l(I

n
) = l(I) for all n, a

contradiction. Now we give the color to I which is given to the invariant vertex Il(J).
Here IIl(J) 6= 0, for otherwise I ⊆ l(Il(J)) = r(Il(J)) which gives Il(J)I = 0,
giving thereby (Il(J))2 = 0, a contradiction. Suppose I and I/ has the color of
Ik(say). Then we get some J, J/ ∈ V ∗(N) such that Il(J) and I/l(J/) are given

the color of Ik. Now l(Il(J)) * l(Ik) and l(I/l(J
/

)) * l(Ik). If (Il(J))(I/l(J/)) = 0,
then Il(J) ⊆ l(I/l(J/)) * l(Ik) and I/l(J/) ⊆ r(Il(J)) = l(Il(J)) * l(Ik) which
implies that (Il(J))(I/l(J/)) * l(Ik), a contradiction. Now we show that I and
I/ are not adjacent. If II/ = 0, then II/l(J/) = 0 gives (I/l(J/))I = 0. Thus
(I/l(J/))(Il(J)) = 0 gives (Il(J))2 = (I/l(J/))2 = 0, a contradiction. 2

Example 2.11. Consider Z6 = {0, 1, 2, 3, 4, 5} which is a near-ring with respect
to the tables given below. The only left N subsets are I1 = {0, 3}, I2 = {0, 2, 4}
and I3 = {0, 2, 3.4} which are invariant also and l(I1) = I2 and l(I2) = I1 are two
maximal ideals of the annihilator ideal form. Here the chromatic number χ(Γs(Z6))
is 2 + 1 = 3, i.e., χ(Γs(Z6)) is equal to p + 1, where p is the number of maximal
ideals of the form of left annihilator.

Table

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 0 1 2 3 4 5

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

In the results below, we deal with the essentiality of annihilator ideals in a
near-ring N to determine the chromatic number of Γs(N).
Theorem 2.12. Let N be a near-ring with unity, then the following two are equiv-
alent.

(i) If for a left N -subset I of N , l(I) is essential, then I = 0.

(ii) N is strongly semi-prime.

Proof.

(a) (i)⇒ (ii) Suppose J is an invariant N -subset of N such that J2 = 0. Let A
be a nonzero ideal of N . If AJ = 0 then A = A ∩ l(J) 6= 0. If AJ 6= 0, then
AJ( 6= 0) ⊆ A ∩ l(J). Thus in either cases l(J) is essential. Hence J = 0.
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(b) (ii) ⇒ (i) Let I be a left N -subset such that l(I) is essential. Let J =
l(I)∩ IN . Now J2 ⊆ l(I)IN = 0. Thus J = 0, i.e., l(I)∩ IN = 0 which gives
IN = 0 as l(I) is essential. Hence I = 0. 2

Example 2.13. Consider the ring Z6 = {0, 1, 2, 3, 4, 5} which is strongly semi-
prime with unity. Here I1 = l(I

2
) = {0, 3} and I2 = l(I1) = {0, 2, 4} are the only

nonzero ideals and Z6 = Ann(0) is the only essential ideal.

Example 2.14. Z4 = {0, 1, 2, 3} is a ring with unity. Here Z4 is not strongly
semi-prime as for I = {0, 2}, I2 = 0 and l(I) is an essential ideal of Z4

Theorem 2.15: Let N be a near-ring and x ∈ N be such that every vertex
v ∈ Γ(N) is adjacent to x. Then l(x) is an essential ideal of N .

Theorem 2.16. Let N be a strongly semi-prime near-ring. If Γ(N) has no infinite
clique, then the near-ring N satisfies the acc on essential left N -subsets.

Proof. Let I1 < I2 < I3 < ......be an ascending chain for left N -subsets, where
each Ii’s are essential in N . Suppose Ii < Ii+1. Now Ii ∩ l(Ii) < Ii+1 ∩ l(Ii).
Here Ii ∩ l(Ii) 6= 0 and Ii+1 ∩ l(Ii) 6= 0. Also Ii ∩ l(Ii) 6= Ii+1 ∩ l(Ii) for otherwise
(Ii ∩ l(Ii))2 = (Ii+1 ∩ l(Ii))(Ii ∩ l(Ii)) ⊆ l(Ii)Ii = 0, a contradiction. Now consider
an element xn ∈ In∩ l(In−1) such that xn /∈ In−1∩ l(In−1). Here for i 6= j (suppose
i > j), xixj ∈ (Ii ∩ l(Ii−1))(Ij ∩ l(Ij−1)) ⊆ l(Ii−1)Ij = 0. Thus we get an infinite
clique in N , a contradiction. 2

Theorem 2.17. Let N be a strongly semi-prime near-ring without unity. If Γs(N)
has no infinite clique, then N satisfies the acc on invariant subsets having essential
left annihilators.

Proof. Let I1 < I2 < I3.... be an ascending chain of invariant subsets with essential
left annihilators. Suppose Ii � Ii+1. Let xi+1(6= 0) ∈ Ii+1 \ Ii. Now consider
Ji+1 = l(Ii+1) ∩ 〈xi+1〉 6= 0, where 〈xi+1〉 is the ideal generated by xi+1. Here
JiJj = 0 for i < j, a contradiction. 2

Theorem 2.18. Let N be a strongly semi-prime near-ring without unity and
l(I1), l(I2), ...., l(In) are the only essential N -subsets of N with each Ii is an ideal.
Then χ(Γs(N)) ≤ n+ 1.

Proof. We give n distinct colors to l(Ii)’s. Here IiIi+1 = 0 since for otherwise
(l(Ii)∩IiIi+1) 6= 0. Now (l(Ii)∩IiIi+1)2 ⊆ l(Ii)IiIi+1 = 0 which gives l(Ii)∩IiIi+1 =
0, a contradiction. Now let I be an arbitrary vertex.

(i) CaseI: If Ii ⊆ I for some i, then give the color of Ik to I if k is the max{i|Ii ⊂
I}. Here I and Ik are not adjacent since for otherwise I ⊆ l(Ik) together with
Ik ⊆ I gives that (Ik)2 = 0, a contradiction.

(ii) CaseII: If Ii * I for any i, then there exists an x ∈ Ii such that x /∈ I. Now
consider the ideal generated by x denoted < x > which is clearly non zero.
Thus l(Ii)∩ < x >6= 0. But (l(Ii)∩ < x >)2 ⊆ l(Ii)Ii = 0, a contradiction.
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Suppose two distinct vertices I and J are given the same color of Ik(say). Here
IJ 6= 0 for otherwise I ⊆ l(J) which leads Ik ⊂ I ⊆ l(J). Thus we get I2k = 0 as
Ik ⊂ J , a contradiction. 2

Now we mention the following notes:

(i) Note 1: In a near-ring N , χ(Γs(N)) = 2 if and only if for any two nonzero
I, J ∈ V ∗(N), IJ 6= 0 whenever I 6= 0, J 6= 0. For, suppose there exists
I 6= 0 and J 6= 0 such that IJ = 0. Then {0, I, J} is a clique. Thus
clique(Γs(n)) > χ(Γs(N)), a contradiction.

(ii) Note 2: In a strongly semi-prime near-ring without unity, every essential
ideal of the form l(Ii) with invariant Ii is maximal. For suppose l(Ii) is
not maximal, there exists a proper ideal K of N such that l(Ii) ⊂ K ⊂ N .
Now consider the ideal J generated by Iix(6= 0) for some x( 6= 0) ∈ K. Here
l(Ii) ∩ J 6= 0 but (l(Ii) ∩ J)2 = 0, a contradiction.

Example 2.19. Consider the set Z(p∞) of all rational numbers of the form m
pk such

that 0 ≤ m
pk < 1, where p is a fixed prime number, n runs through all nonnegative

integers. Then Z(p∞) is a ring with respect to addition modulo 1 and multiplication
defined as ab = 0 for all a, b ∈ Z(p∞). It is to be noted that each subgroup
of Z(p∞) is an ideal of it and the only proper ideals of Z(p∞) are of the form

Ik−1 = {0, 1
pk−1 ,

2
pk−2 , ....,

pk−1−1
pk−1 } for each positive integer k. Thus the ideals are in

a chain 0 < I1 < I2 < ..... and each Ii’s are essential Zp∞ is a reduced ring without
unity. But here l(Ik−1) = 0 for all k which are not essential. Here IiIj 6= 0 for any
i, j and χ(Γs(Zp∞)) = 2.

Example 2.20. Consider the setM(N) =

(
Z2 N
0 Z2

)
which is the set of elements

of the form {
(

0 n
0 0

)
,

(
0 n
0 1

)
,

(
1 n
0 0

)
,

(
1 n
0 1

)
}, where n ∈ N . Here

M(N) is a near-ring with respect to ordinary addition and multiplication(xn =
xn, x ∈ Z2) with unity which is not strongly semi-prime as(

0 n
0 0

)
.

(
0 n
0 0

)
=

(
0 0
0 0

)
. If N is not finite, then M(N) has infinite

invariant sets Ii(i = 1, 2, 3, ...) such that l(Ii) ={
(

0 n
0 0

)
,

(
0 0
0 0

)
| n ∈ N} is

essential and χ(Γs(M(N))) =∞.

Theorem 2.21. Let Γs(N) be a bipartite graph with two non-empty parts V1 and
V2. Then

(i) If N is strongly semi-prime without unity, then N has exactly two invariant
N subsets I

1
and I2, where l(I1) and l(I2) are essential.

(ii) If N is not strongly semi-prime, then Γs(N) is a star graph with more than
one vertices.
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Proof.

(i) Let I1, I2 and I3 be three distinct invariant N -subsets of N such that l(Ii)’s
are essential. Now J1 = l(I1)∩I2 6= 0, J2 = l(I3)∩I2 6= 0 and J3 = l(I2)∩I3 6=
0. Here J3 6= J1 for otherwise (l(I2) ∩ I3)2 = (l(I2) ∩ I3)(l(I1) ∩ I2) = 0, a
contradiction. Thus (l(I2) ∩ I3)(l(I1) ∩ I2) = 0. Similarly (l(I1) ∩ I2)(l(I3) ∩
I1) = 0 and (l(I3) ∩ I1)(l(I2) ∩ I3) = 0. Thus J1 −→ J2 −→ J3 −→ J1 is a
cycle, a contradiction.

(ii) Suppose N is not strongly semi-prime and let I 6= 0 be an invariant N subset
such that I2 = 0. Assume that I ∈ V1. We show that V1 = {I}. Here either
l(I) is not essential or I is minimal. Suppose l(I) is essential and there exists
an I1( 6= 0) such that I1  I. Now l(I) ∩ I1 6= 0 and (l(I) ∩ I1)I = 0 gives
l(I)∩I1 ∈ V2 and II1 = 0 gives I1 ∈ V2. But (l(I)∩I1)I = 0, a contradiction.
Now we consider the following cases.

(a) CaseI: If l(I) is essential. Suppose there exists a P ∈ V1 \ {I}. If
IP = 0 , then P ∈ V2, a contradiction. Hence IP 6= 0. Since Γs(N) is
connected, there exists a K ∈ V2 such that PK = 0. Now l(I)∩ IP 6= 0
and I(l(I) ∩ IP ) = 0 gives that l(I) ∩ IP ∈ V2. But (l(I) ∩ IP )K = 0,
a contradiction.

(b) CaseII: If l(I) is not essential. Now suppose I is minimal. Then I ∩
P = P which gives that (I ∩ P )I = I2 = 0. Thus I ∩ P ∈ V2. But
(I ∩ P )K = 0, a contradiction. If I is not minimal, then IP ⊂ I which
gives (IP ∩ I)K = (IP )K = 0. Thus IP ∩ I ∈ V2, a contradiction to
(IP ∩ I)K = 0. 2

Theorem 2.22. ([7]) A strongly semi-prime near-ring N satisfying the acc on left
annihilators has no nonzero nil left N -subsets in it.

In the example 2.11, we see that every essential left ideal is essential as left N -
subgroup also. We call such a near-ring a near-ring with total essential character.
Moreover for near-ring with the a.c.c on annihilators, we would like to refer [11].

Theorem 2.23. ([7]) If a strongly semi-prime near-ring N is with total essential
character, then N satisfies the dcc (descending chain condition) on left annihilators.

Theorem 2.24: Let N be a strongly semi-prime near -ring with the acc on left
annihilators satisfying total essential character and the left annihilators are dis-
tributively generated. Let I be a vertex of Γs(N) such that every other vertex is
adjacent to I. Then l(I) contains a left non-zero divisor.

Proof. Here l(I) is essential. Consider I1(6= 0) ⊆ l(I) such that I1 is non nilpotent
and l(I1) is as large as possible. If l(I1) = 0, we stop. If not, there exists a
left N -subset X( 6= 0) such that XI1 = 0. But X ∩ l(I) 6= 0 as l(I) is essential.
Consider a1(6= 0) ∈ X ∩ l(I) such that l(Na1) is as large as possible. Now Na1 ⊆
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X ∩ l(I). If l(Na1) = 0, we stop. Suppose l(Na1) 6= 0. Now Na1I1 ⊆ l(I) and
Na1 + I1 ⊆ l(I). If l(Na1 + I) = 0, then we stop. If not, then l(Na1 + I1) ∩ l(I) 6=
0. Again l(Na1 + I1) = l(Na1) ∩ l(I1)[theorem 2.4] gives l(Na1 + I1) ∩ l(I) =
l(Na1) ∩ l(I1) ∩ l(I) 6= 0. Now we consider a2(6= 0) ∈ l(Na1) ∩ l(I1) ∩ l(I) with
a2 non nilpotent and l(Na2) is as large as possible. If l(Na2 + Na1 + I1) = 0,
we stop. If not, proceeding in the same way, we get l(I1) ⊇ l(I1) ∩ l(Na1) ⊇
l(I1)∩ l(Na1)∩ l(Na2) ⊇ ....... which is stationary. Hence we get a positive integer
t such that l(I1) ∩ l(Na1) ∩ .... ∩ l(Nat) = l(I1) ∩ l(Na1) ∩ .... ∩ l(Nat+1). Now
l(I1)+l(Na1)+....+l(Nat) = l(I1)+l(Na1)+....+l(Nat+1)=l(I1+Na1+....+Nat)∩
l(Nat+1) ⊆ l(Nat+1). Now Nat+1 ⊆ l(I1+Na1+....+Nat) gives Nat+1 ⊆ l(Nat+1)
which gives (Nat+1)2 = 0, a contradiction. Thus l(I1 +Na1 + ....+Nat)∩ l(I) = 0
giving thereby l(I1 +Na1 + ....+Nat) = 0 as l(I) is essential. 2
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