KYUNGPOOK Math. J. 56(2016), 1103-1113 http://dx.doi.org/10.5666/KMJ.2016.56.4.1103 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On the Diameter, Girth and Coloring of the Strong Zero-Divisor Graph of Near-rings

PROHELIKA DAS

Department of Mathematics, Cotton College State University, Guwahati 781001, Assam, India e-mail: dasprohelika@yahoo.com

ABSTRACT. In this paper, we study a directed simple graph $\Gamma_s(N)$ for a near-ring N, where the set $V^*(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I, J \in V^*(N)$, I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph $\Gamma_s(N)$. Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph $\Gamma_s(N)$.

1. Introduction

In this paper by a near-ring N, we mean a zero symmetric (right) near-ring not necessarily containing 1. A subset I of N is left(right)N-subset of N if $NI \subseteq I(IN \subseteq I)$ and I is invariant if it is both left as well as right N-subset of N. If I is a left N-subset of N, then the ideal $l(I) = \{x \in N \mid xI = 0\}$ is the left annihilator of I. The set $Z_l = \{n \in N \mid \text{for some } x \in N \setminus \{0\}, nx = 0\}$ [12] is the set of left zero-divisors of N. We consider the strong zero-divisor graph $\Gamma_s(N)$, where the set $V^*(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I, J \in V^*(N), I$ is adjacent to J if and only if IJ = 0. If I and J are singleton sets, then the strong graph $\Gamma_s(N)$ reduced to the graph $\Gamma(N)$ of N where $x \neq 0 \in N$ is adjacent to $y \neq 0 \in N$ if and only if xy = 0.

The concept of zero-divisor graph of a commutative ring was first introduced by Beck in [5]. Beck [5] was mainly interested in the coloring of the ring. This notion was redefined in [3] and they proved that such a graph is always connected and its diameter is always less than or equal to 3. Anderson and Mulay in [4] studied diameter and girth of zero-divisor graph of a commutative ring. The notion of zerodivisor graph was extended to a non-commutative ring [1] and various properties of

Received May 8 2014; revised October 6, 2014; accepted January 13, 2015.

²⁰¹⁰ Mathematics Subject Classification: 16Y30, 13A15.

Key words and phrases: Near-ring, N-subsets, diameter, girth, essential ideal, chromatic number, left annihilator.

diameter and girth were established. In [10], Redmond has generalised the notion of zero-divisor graph. For an ideal I of a commutative ring R, Redmond [10] defined an undirected graph $\Gamma_I(R)$ with vertices $\{x \in R \setminus I \mid xy \in I \text{ for some } y \in R \setminus I\}$ where distinct vertices x and y are adjacent if and only if $xy \in I$. Behboodhi [6] studied annihilator ideal graph dealing with the annihilators of ideals of a commutative ring.

In this paper, we study the graph theoretic aspect of a near-ring N which is a less symmetric algebraic structure with + and ., where both operations are noncommutative. An element $d \in N$ is distributive if $d(n_1 + n_2) = dn_1 + dn_2$ for any $n_1, n_2 \in N$ and N_d denotes the set of all distributive elements of N. If $N = N_d$ and $(N, +) = \langle N_d \rangle$, then N is distributive and distributively generated, respectively. For a distributive near-ring N with 1, the graph $\Gamma(N)$ is the zero-divisor graph of a non-commutative ring N.

For basic definitions and results related to near-ring, we would like to mention Pilz [9].

Recall that a graph G is connected if there is a path between any two distinct vertices and is complete if every two vertices are adjacent. The distance between two distinct vertices x and y of G is the length of the shortest path from x to y and is denoted by d(x, y). If no such path exists, then $d(x, y) = \infty$. The diameter of the graph G is the sup{d(x, y)|x and y are distinct vertices of G} and is denoted by diamG. The girth of G is the length of distance of the shortest cycle in G, denoted by gr(G). If no such cycle, then $gr(G) = \infty$.

A left N-subset I of N is nilpotent if there exists a positive integer n such that $I^n = 0$ and $I^{n-1} \neq 0$. The near-ring N is strongly semi-prime if it has no nonzero nilpotent invariant subsets. The notion of simple graph excludes the loops which is compatible to the strongly semi-prime character of the near-ring. The graph that we dealt here is a connected one and has diameter 3 or less, the proof of which follows in alike way to that of the theorem 2.3 [3]. It is due to the proposition 1.3.2 [8], if a graph G has a cycle, then the gr(G) is less than 2diamG + 1. In this paper, we study diameter and girth of the strong zero-divisor graphs of near-rings. Anderson [3] has conjectured that if a zero-divisor graph had a cycle, then its girth was 3 or 4. Haevey Mudd and Jamson gave an elegant proof to the conjecture of Anderson[3]. We establish a sufficient condition for diameter 3 for the graph $\Gamma_s(N)$ of the near-ring N. Existence of a cycle in the strong zero-divisor graph deserves exclusive interest. We prove that in a strongly semi-prime near-ring, if $\Gamma_s(N)$ has a cycle with an invariant vertex, then $gr(\Gamma_s(N)) \leq 4$.

Moreover, in this paper, we deal with coloring of $\Gamma_s(N)$. The minimal numbers of colors so that no two adjacent elements of the graph G have same color is the chromatic number of G and is denoted by $\chi(G)$. A clique of G is the maximal connected subgraph of it. The number of vertices in the largest clique in the graph G is the *cliqueG*. Beck, [5] conjectured that $\chi(\Gamma(R)) = clique(\Gamma(R))$. But D.D.Anderson and M.Nasser [2] gave the counter example such as R = $Z_4[[x, y, z]/(x^2 - 2, y^2 - 2, z^2, 2x, 2y, 2z, xy, xz, yz - 2)]$ for which $\chi(\Gamma(R)) = 5$ and $clique(\Gamma(R)) = 4$. Beck [5] has proved characterisation of rings with finite chromatic

number and showed that such rings have the ascending chain condition(acc) on annihilators. We here deal with the strong zero-divisor graph $\Gamma_s(N)$ having finite chromatic number. A left *N*-subset(ideal) *I* of *N* is essential in *N* if for any non zero left *N*-subset(ideal) *A* of *N*, $I \cap A \neq 0$. We prove that chromatic number of such a graph showing alike relation with the numbers of maximal annihilator ideals as well as with that of essential annihilator ideals of the near-ring. Also we deal with the strong zero-divisor graph $\Gamma_s(N)$ having bipartite character, i.e., the set of vertices of $\Gamma_s(N)$ can be decomposed into two disjoint parts such that every edge joints a vertex of one part to that of the other part. We establish that if $\Gamma_s(N)$ is bipartite where *N* is strongly semi-prime without unity, then *N* has exactly two invariant subsets I_1 and I_2 (say) provided $l(I_1)$ and $l(I_2)$ are essential. In addition to it we show that if $\Gamma_s(N)$ is bipartite with nonzero nilpotent invariant subsets in *N*, then $\Gamma_s(N)$ is a star graph.

The following are some examples of strong zero-divisor graphs. **Example 1.1.**

(1) $\Gamma_s(Z_4) \cong \Gamma(Z_4)$

 $\Gamma_s(Z_4)$ or $\Gamma(Z_4)$

(2) $\Gamma_s(Z_2 \times Z_2) \cong \Gamma(Z_2 \times Z_2) \cong \Gamma_s(Z_6) \ (Z_2 \times Z_2 \not\cong Z_6)$

 $\Gamma_s(Z_2 \times Z_2), \, \Gamma(Z_2 \times Z_2) \text{ or } \Gamma_s(Z_6)$

(3) $\Gamma_s(\frac{Z_3[x]}{\langle x^2 \rangle}) \cong \Gamma_s(\frac{Z_2[x,y]}{\langle x^2, y^2, xy \rangle})$ but $\frac{Z_3[x]}{x^2} \ncong \frac{Z_{2[x,y]}}{\langle x^2, y^2, xy \rangle}$

2. Main Results

In this section, we present results regarding diameter and girths of $\Gamma_s(N)$ in contrast to $\Gamma(N)$ in some cases. We note that the vertex 0 is adjacent to every other vertices which we exclude here for obvious reason.

A vertex I of $\Gamma_s(N)$ is an invariant vertex if it is an invariant N subset of the near-ring N. The right annihilator of a left N-subset I of N is $r(I) = \{x \in N \mid Ix = 0\}$ which is a right N-subset of N, need not coincide to l(I) in general. However in a strongly semi-prime near-ring N for an invariant subset I, Il(I) = 0as $(Il(I))^2 = I(l(I)I)l(I) = 0$ giving thereby $l(I) \subseteq r(I)$. Similarly $r(I) \subseteq l(I)$. Thus we state the following lemma.

Lemma 2.1. Let N be a strongly semi-prime near-ring. Then for an invariant subset I of N, l(I) = r(I).

For a subset I of N, $l(I) \neq 0$ may not imply $l(I + J) \neq 0$ for any subset J of N. Below we present when it occurs.

Lemma 2.2. Let N be a near-ring such that the left annihilators are distributively generated. If I be a left N-subset with $l(I) \neq 0$ and $J \subseteq l(I)$ is a nilpotent left N-subset of N, then $l(I + J) \neq 0$.

Proof. Since $l(I) \neq 0$, there exists an $x(\neq 0) \in N$ such that xI = 0. Now J is nilpotent gives a positive integer m such that $xJ^m = 0$ and $xJ^{m-1} \neq 0$. Again $xJ^{m-1}J = xJ^m = 0$ and $xJ^{m-1}I = xJ^{m-2}JI = 0$. Thus $xJ^{m-1}(I+J) = 0$ giving thereby $xJ^{m-1} \subseteq l(I+J)$. Thus $l(I+J) \neq 0$.

Thus in this lemma, we see that the nilpotency of $J \subseteq l(I)$ leads us to $l(I+J) \neq 0$. In the next, we present diameter of the strong zero-divisor graph $\Gamma_s(N)$, where N is a strongly semi-prime near-ring.

Theorem 2.3. Let N be a strongly semi-prime near-ring such that the left annihilators are distributively generated. If there exists a nilpotent vertex J and an invariant vertex I such that l(I + J) = 0, then $diam(\Gamma_s(N)) = 3$.

Proof. We give the proof in two steps such as

(i) Step1:

1106

Suppose d(I, J) = 2. Let $M \in V^*(N)$ be such that, $I \longrightarrow M \longrightarrow J$ is a directed path. Then IM = 0 and MJ = 0 which gives that $M \in r(I) = l(I)$. Now, M(I + J) = 0 gives that $M(\neq 0) \subseteq l(I + J)$. Thus $l(I + J) \neq 0$, a contradiction.

(ii) Step2:

contradiction. Similarly, $I_2I_1 = 0$

CaseI: If $IJ \neq 0$, consider M = l(I), N = l(J). Claim: $I \longrightarrow M = l(I) \longrightarrow N = l(J) \longrightarrow J$ is a directed path. It is enough to show that l(I)l(J) = 0. Suppose there exists an $x \in l(I), y \in l(J)$ such that $xy \neq 0$. Now $x \in l(I) = r(I)$ gives Ixy = 0. Thus $xy \in r(I) = l(I)$ gives xyI = 0. Again $y \in l(J)$ gives xyJ = 0. Now we get xy(I + J) = 0 which gives $(0 \neq)xy \in l(I + J)$, a contradiction.

CaseII: If IJ = 0, then $(I+J)^2 \subseteq I^2 + J^2$. And $l(I+J)^2 = 0$, as $x \in l(I+J)^2$ gives $x(I+J) \subseteq l(I+J)$ giving thereby $x \in l(I+J) = 0$. Since J is nilpotent, qJ is also so where $q \in l(I)$ with $qJ^2 \neq 0$. Now $qJ \subseteq l(I)$ gives $l(I+qJ) \neq 0$ [Lemma 2.2]. Again $I + qJ \neq J$, otherwise $I \subseteq J$ implies $l(I+J) = l(J) \neq 0$, a contradiction. Hence I + qJ,J are distinct and I + J = I + qJ + J which gives l(I+qJ+J) = 0 and $(I+qJ)J \neq 0$. Hence d(I+qJ,J) = 3[caseI]. \Box

Theorem 2.4. Let N be a strongly semi-prime near-ring such that the left annihilators are distributively generated. If I is an invariant N-subset of N containing a non nilpotent subset I_1 with maximal left annihilators, then $d(I, J) \neq 2$ for any $J \subseteq l(I_1)$ with $l(I_1) \cap l(J) = 0$.

Proof. Let $y \in l(I_1 + J)$, $y = \sum \pm d_i$ where $l(I_1 + J) = \langle S \rangle$, $d_i \in S$, a set of distributive elements of N. Now $d_i(I_1 + J) = 0$ gives $(d_iI_1 + d_iJ)i_1 = 0$ for each $i_1 \in I_1$. Thus $d_iI_1i_1 = 0$ as $J \subseteq l(I_1)$ giving thereby $d_i \in l(I_1) = l(I_1i_1)$, since $l(I_1)$ is maximal. Now we get $d_iJ = 0$ which gives $d_i \in l(I_1) \cap l(J)$ for each i. Thus y = 0 which gives $l(I_1 + J) = 0$ giving thereby l(I + J) = 0. Hence $d(I, J) \neq 2$. [Theorem 2.3(i)]

Theorem 2.5. Let $P_1 = l(I_1)$ and $P_2 = l(I_2)$ be two prime ideals of N such that $P_1 \cap P_2 = 0$, where I_1 and I_2 are invariant subsets of N. Then $I_1I_2 = (0) = I_2I_1$. *Proof.* For $I_1I_2 \neq 0$, we get $I_1 \nsubseteq l(I_2) = P_2$ and $I_2 \nsubseteq r(I_1) = l(I_1) = P_1$. Now $P_1I_1 \subseteq P_2$ gives $P_1 \subseteq P_2$ as $I_1 \nsubseteq P_2 = l(I_2)$ giving thereby $P_1 \cap P_2 = P_1 \neq 0$, a

Definition 2.6. Invariant associated of a near-ring N denoted by I - Ass(N) is the collection of $l(I_i)$'s, where each $l(I_i)$ is a prime ideal with invariant N-subset I_i such that $l(I_i) \cap l(I_i) = 0$ for $i \neq j$.

Corollary 2.7. If in a strongly semi-prime near-ring N, $|(I - AssN)| \ge 3$, then $gr(\Gamma_s(N)) = 3$.

Proof. Let $I - Ass(N) = \{P_1, P_2, P_3\}$, then $P_1 = l(I_1), P_2 = l(I_2)$ and $P_3 = l(I_3)$ for some invariant subsets I_1, I_2 and I_3 respectively. Then $I_1I_2 = 0, I_2I_3 = 0$ and

 $I_3I_1 = 0$ [theorem 2.5]. Hence $I_1 \longrightarrow I_2 \longrightarrow I_3 \longrightarrow I_1$ is a cycle of length 3. Thus $gr(\Gamma_s(N)) = 3.$

Theorem 2.8. If $|I - AssN| \ge 5$, then $\Gamma_s(N)$ is not a planner graph.

Proof. Let $I - AssN = \{P_1, P_2, P_3, P_4, P_5\}$ where $P_i = l(I_i)(say), 1 \le i \le 5$. Here $I_iI_j = 0$ for $i \ne j$ [theorem 2.5]. Thus the graph $\Gamma_s(N)$ contains Kuratowski's first graph. Hence $\Gamma_s(N)$ is not planner.

Next we determine the girth of the graph $\Gamma_s(N)$ of a stongly semi-prime nearring N if it has a cycle with at least one invariant vertex.

Theorem 2.9. Let N be a strongly semi-prime near-ring. If $\Gamma_s(N)$ contains a cycle with an invariant vertex in it, then $gr(\Gamma_s(N)) \leq 4$.

Proof. Assume $n = gr(\Gamma_s(N))$ is 5, 6 or 7. Let $I_1 \longrightarrow I_2 \longrightarrow I_3.... \longrightarrow I_n \longrightarrow I_1...(i)$ be a cycle with minimal length n. Let I_i be an invariant vertex. Now consider the subgraph $\Gamma'_s(N)$ of $\Gamma_s(N)$ spanned by the vertices $I_1, I_2, ..., I_i I_{i+2}$. If $I_i I_{i+2} \neq I_k$ for any $k, 1 \leq k \leq n$, then $I_{i-1} \longrightarrow I_i \longrightarrow I_{i+1} \longrightarrow I_i I_{i+2} \longrightarrow I_{i-1}, (i \geq 2)$ is a cycle of length 4. Let $I_i I_{i+2} = I_k$ for some k. Now we show the following.

- (i) $I_i I_{i+2} \neq I_{i+1}$. If $I_i I_{i+2} = I_{i+1}$, then $(I_i I_{i+2}) I_{i-1} = I_{i+1} I_{i-1}$. Now $I_{i+1} I_{i-1} = (I_i I_{i+2}) I_{i-1} \subseteq I_i I_{i-1} = 0$, which gives $I_{i+1} I_{i-1} = 0$. Thus $I_{i-1} \longrightarrow I_i \longrightarrow I_{i+1} \longrightarrow I_{i-1}$ is a cyclic, a contradiction to (i).
- (ii) $I_i I_{i+2} \neq I_{i-1}$. For otherwise, $I_{i+1}(I_i I_{i+2}) = I_{i+1} I_{i-1}$ which gives $I_{i+1} I_{i-1} = (I_{i+1} I_i) I_{i+2} = 0$. Thus $I_{i-1} \longrightarrow I_i \longrightarrow I_{i+1} \longrightarrow I_{i-1}$ is a cycle, a contradiction to (i).
- (iii) $I_iI_{i+2} \neq I_{i+3}$. If $I_iI_{i+2} = I_{i+3}$, then we get $I_{i+3}I_{i+1} = (I_iI_{i+2})I_{i+1} \subseteq I_iI_{i-1} = 0$, gives the cycle $I_{i+1} \longrightarrow I_{i+2} \longrightarrow I_{i+3} \longrightarrow I_{i+1}$, a contradiction.

Now $I_i I_{i+2}$ is adjacent to three distinct vertices I_{i-1}, I_{i+1} and I_{i+3} . Thus there exists an extra edge in $\Gamma'_s(N)$ which is not in the original cycle. Hence there must exist a smaller cycle $\Gamma'_s(N)$, a contradiction.

Now we present coloring of the strong zero-divisor graph $\Gamma_s(N)$ of N.

Theorem 2.10. Let N be a strongly semi-prime near-ring. If N has k number of maximal ideals of the form $l(I_i)$ where I_i 's are invariant subsets such that $l(I_i) \cap l(I_j) = 0$ for $i \neq j, 1 \leq i, j \leq k$, then $\chi(\Gamma_s(N)) \leq k + 1$.

Proof. First we give k distinct colors to I_i 's and an extra color to 0. Here $I_iI_j = 0$ for $i \neq j$ [Theorem 2.6]. Now we color the invariant vertices. If $I \neq 0$ be an arbitrary invariant vertex, we give to I the color which is given to I_n^{th} vertex, where n is the minimal $\{i|l(I) \notin l(I_i)\}$. Let I and J be two invariant vertices such that same color of I_k is given to them. Then $l(I) \notin l(I_k)$ and $l(J) \notin l(I_k)$. If IJ = 0, then $I \subseteq l(J) \notin l(I_k)$ and $J \subseteq r(I) = l(I) \notin l(I_k)$ which leads to $IJ \notin l(I_k)$, a contradiction. Next we show that these k + 1 colors are enough to color the whole graph. Let $I \neq 0$ be a left N-subset of N and $I \in V^*(N)$.

1108

Consider $Il(J)(\neq 0)$ with some $J \in V^*(N)$. If Il(J) = 0 for any $J \in V^*(N)$, then $Il(I_n) = 0$ for all n, $1 \leq n \leq k$. Thus $l(I_n) \subseteq l(I)$ gives $l(I_n) = l(I)$ for all n, a contradiction. Now we give the color to I which is given to the invariant vertex Il(J). Here $IIl(J) \neq 0$, for otherwise $I \subseteq l(Il(J)) = r(Il(J))$ which gives Il(J)I = 0, giving thereby $(Il(J))^2 = 0$, a contradiction. Suppose I and I' has the color of I_k (say). Then we get some $J, J' \in V^*(N)$ such that Il(J) and I'l(J') are given the color of I_k . Now $l(Il(J)) \notin l(I_k)$ and $l(I'l(J')) \notin l(I_k)$. If (Il(J))(I'l(J')) = 0, then $Il(J) \subseteq l(I'l(J')) \notin l(I_k)$ and $I'l(J') \subseteq r(Il(J)) = l(Il(J)) \notin l(I_k)$ which implies that $(Il(J))(I'l(J')) \notin l(I_k)$, a contradiction. Now we show that I and I' are not adjacent. If II' = 0, then II'l(J') = 0 gives (I'l(J'))I = 0. Thus (I'l(J'))(Il(J)) = 0 gives $(Il(J))^2 = (I'l(J'))^2 = 0$, a contradiction.

Example 2.11. Consider $Z_6 = \{0, 1, 2, 3, 4, 5\}$ which is a near-ring with respect to the tables given below. The only left N subsets are $I_1 = \{0,3\}$, $I_2 = \{0,2,4\}$ and $I_3 = \{0,2,3.4\}$ which are invariant also and $l(I_1) = I_2$ and $l(I_2) = I_1$ are two maximal ideals of the annihilator ideal form. Here the chromatic number $\chi(\Gamma_s(Z_6))$ is 2 + 1 = 3, i.e., $\chi(\Gamma_s(Z_6))$ is equal to p + 1, where p is the number of maximal ideals of the form of left annihilator.

+	0	1	2	3	4	5	•	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	0	1	2	3	4	5	5	0	5	4	3	2	1

In the results below, we deal with the essentiality of annihilator ideals in a near-ring N to determine the chromatic number of $\Gamma_s(N)$.

Theorem 2.12. Let N be a near-ring with unity, then the following two are equivalent.

- (i) If for a left N-subset I of N, l(I) is essential, then I = 0.
- (ii) N is strongly semi-prime.

Proof.

(a) $(i) \Rightarrow (ii)$ Suppose J is an invariant N-subset of N such that $J^2 = 0$. Let A be a nonzero ideal of N. If AJ = 0 then $A = A \cap l(J) \neq 0$. If $AJ \neq 0$, then $AJ(\neq 0) \subseteq A \cap l(J)$. Thus in either cases l(J) is essential. Hence J = 0.

(b) $(ii) \Rightarrow (i)$ Let I be a left N-subset such that l(I) is essential. Let $J = l(I) \cap IN$. Now $J^2 \subseteq l(I)IN = 0$. Thus J = 0, i.e., $l(I) \cap IN = 0$ which gives IN = 0 as l(I) is essential. Hence I = 0.

Example 2.13. Consider the ring $Z_6 = \{0, 1, 2, 3, 4, 5\}$ which is strongly semiprime with unity. Here $I_1 = l(I_2) = \{0, 3\}$ and $I_2 = l(I_1) = \{0, 2, 4\}$ are the only nonzero ideals and $Z_6 = Ann(0)$ is the only essential ideal.

Example 2.14. $Z_4 = \{0, 1, 2, 3\}$ is a ring with unity. Here Z_4 is not strongly semi-prime as for $I = \{0, 2\}$, $I^2 = 0$ and l(I) is an essential ideal of Z_4 **Theorem 2.15**: Let N be a near-ring and $x \in N$ be such that every vertex

Theorem 2.15: Let N be a near-ring and $x \in N$ be such that every vertex $v \in \Gamma(N)$ is adjacent to x. Then l(x) is an essential ideal of N.

Theorem 2.16. Let N be a strongly semi-prime near-ring. If $\Gamma(N)$ has no infinite clique, then the near-ring N satisfies the acc on essential left N-subsets.

Proof. Let $I_1 < I_2 < I_3 < \dots$ be an ascending chain for left N-subsets, where each I_i 's are essential in N. Suppose $I_i < I_{i+1}$. Now $I_i \cap l(I_i) < I_{i+1} \cap l(I_i)$. Here $I_i \cap l(I_i) \neq 0$ and $I_{i+1} \cap l(I_i) \neq 0$. Also $I_i \cap l(I_i) \neq I_{i+1} \cap l(I_i)$ for otherwise $(I_i \cap l(I_i))^2 = (I_{i+1} \cap l(I_i))(I_i \cap l(I_i)) \subseteq l(I_i)I_i = 0$, a contradiction. Now consider an element $x_n \in I_n \cap l(I_{n-1})$ such that $x_n \notin I_{n-1} \cap l(I_{n-1})$. Here for $i \neq j$ (suppose i > j), $x_i x_j \in (I_i \cap l(I_{i-1}))(I_j \cap l(I_{j-1})) \subseteq l(I_{i-1})I_j = 0$. Thus we get an infinite clique in N, a contradiction.

Theorem 2.17. Let N be a strongly semi-prime near-ring without unity. If $\Gamma_s(N)$ has no infinite clique, then N satisfies the acc on invariant subsets having essential left annihilators.

Proof. Let $I_1 < I_2 < I_3...$ be an ascending chain of invariant subsets with essential left annihilators. Suppose $I_i \leq I_{i+1}$. Let $x_{i+1} \neq 0 \in I_{i+1} \setminus I_i$. Now consider $J_{i+1} = l(I_{i+1}) \cap \langle x_{i+1} \rangle \neq 0$, where $\langle x_{i+1} \rangle$ is the ideal generated by x_{i+1} . Here $J_i J_j = 0$ for i < j, a contradiction.

Theorem 2.18. Let N be a strongly semi-prime near-ring without unity and $l(I_1), l(I_2), ..., l(I_n)$ are the only essential N-subsets of N with each I_i is an ideal. Then $\chi(\Gamma_s(N)) \leq n+1$.

Proof. We give n distinct colors to $l(I_i)$'s. Here $I_iI_{i+1} = 0$ since for otherwise $(l(I_i) \cap I_iI_{i+1}) \neq 0$. Now $(l(I_i) \cap I_iI_{i+1})^2 \subseteq l(I_i)I_iI_{i+1} = 0$ which gives $l(I_i) \cap I_iI_{i+1} = 0$, a contradiction. Now let I be an arbitrary vertex.

- (i) CaseI: If $I_i \subseteq I$ for some *i*, then give the color of I_k to *I* if *k* is the $max\{i|I_i \subset I\}$. Here *I* and I_k are not adjacent since for otherwise $I \subseteq l(I_k)$ together with $I_k \subseteq I$ gives that $(I_k)^2 = 0$, a contradiction.
- (ii) CaseII: If $I_i \not\subseteq I$ for any *i*, then there exists an $x \in I_i$ such that $x \notin I$. Now consider the ideal generated by *x* denoted $\langle x \rangle$ which is clearly non zero. Thus $l(I_i) \cap \langle x \rangle \neq 0$. But $(l(I_i) \cap \langle x \rangle)^2 \subseteq l(I_i)I_i = 0$, a contradiction.

Suppose two distinct vertices I and J are given the same color of $I_k(\text{say})$. Here $IJ \neq 0$ for otherwise $I \subseteq l(J)$ which leads $I_k \subset I \subseteq l(J)$. Thus we get $I_k^2 = 0$ as $I_k \subset J$, a contradiction.

Now we mention the following notes:

- (i) Note 1: In a near-ring N, $\chi(\Gamma_s(N)) = 2$ if and only if for any two nonzero $I, J \in V^*(N), IJ \neq 0$ whenever $I \neq 0, J \neq 0$. For, suppose there exists $I \neq 0$ and $J \neq 0$ such that IJ = 0. Then $\{0, I, J\}$ is a clique. Thus clique($\Gamma_s(n)$) > $\chi(\Gamma_s(N))$, a contradiction.
- (ii) Note 2: In a strongly semi-prime near-ring without unity, every essential ideal of the form $l(I_i)$ with invariant I_i is maximal. For suppose $l(I_i)$ is not maximal, there exists a proper ideal K of N such that $l(I_i) \subset K \subset N$. Now consider the ideal J generated by $I_i x (\neq 0)$ for some $x (\neq 0) \in K$. Here $l(I_i) \cap J \neq 0$ but $(l(I_i) \cap J)^2 = 0$, a contradiction.

Example 2.19. Consider the set $Z_{(p^{\infty})}$ of all rational numbers of the form $\frac{m}{p^k}$ such that $0 \leq \frac{m}{p^k} < 1$, where p is a fixed prime number, n runs through all nonnegative integers. Then $Z(p^{\infty})$ is a ring with respect to addition modulo 1 and multiplication defined as ab = 0 for all $a, b \in Z(p^{\infty})$. It is to be noted that each subgroup of $Z(p^{\infty})$ is an ideal of it and the only proper ideals of $Z(p^{\infty})$ are of the form $I_{k-1} = \{0, \frac{1}{p^{k-1}}, \frac{2}{p^{k-2}}, \dots, \frac{p^{k-1}-1}{p^{k}-1}\}$ for each positive integer k. Thus the ideals are in a chain $0 < I_1 < I_2 < \dots$ and each I_i 's are essential $Z_{p^{\infty}}$ is a reduced ring without unity. But here $l(I_{k-1}) = 0$ for all k which are not essential. Here $I_i I_j \neq 0$ for any i, j and $\chi(\Gamma_s(Z_{p^{\infty}})) = 2$.

Example 2.20. Consider the set $M(N) = \begin{pmatrix} Z_2 & N \\ 0 & Z_2 \end{pmatrix}$ which is the set of elements of the form $\{\begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & n \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}\}$, where $n \in N$. Here M(N) is a near-ring with respect to ordinary addition and multiplication $(\overline{x}n = xn, \overline{x} \in Z_2)$ with unity which is not strongly semi-prime as

 $\begin{array}{c} xn, x \in \mathbb{Z}_2 \text{) with unity when is not set energy set if } \\ \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \text{ If } N \text{ is not finite, then } M(N) \text{ has infinite} \\ \text{invariant sets } I_i(i = 1, 2, 3, \ldots) \text{ such that } l(I_i) = \left\{ \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mid n \in N \right\} \text{ is} \\ \text{essential and } \chi(\Gamma_s(M(N))) = \infty. \end{array}$

Theorem 2.21. Let $\Gamma_s(N)$ be a bipartite graph with two non-empty parts V_1 and V_2 . Then

- (i) If N is strongly semi-prime without unity, then N has exactly two invariant N subsets I₁ and I₂, where l(I₁) and l(I₂) are essential.
- (ii) If N is not strongly semi-prime, then $\Gamma_s(N)$ is a star graph with more than one vertices.

Proof.

- (i) Let I_1, I_2 and I_3 be three distinct invariant N-subsets of N such that $l(I_i)$'s are essential. Now $J_1 = l(I_1) \cap I_2 \neq 0$, $J_2 = l(I_3) \cap I_2 \neq 0$ and $J_3 = l(I_2) \cap I_3 \neq 0$. Here $J_3 \neq J_1$ for otherwise $(l(I_2) \cap I_3)^2 = (l(I_2) \cap I_3)(l(I_1) \cap I_2) = 0$, a contradiction. Thus $(l(I_2) \cap I_3)(l(I_1) \cap I_2) = 0$. Similarly $(l(I_1) \cap I_2)(l(I_3) \cap I_1) = 0$ and $(l(I_3) \cap I_1)(l(I_2) \cap I_3) = 0$. Thus $J_1 \longrightarrow J_2 \longrightarrow J_3 \longrightarrow J_1$ is a cycle, a contradiction.
- (ii) Suppose N is not strongly semi-prime and let $I \neq 0$ be an invariant N subset such that $I^2 = 0$. Assume that $I \in V_1$. We show that $V_1 = \{I\}$. Here either l(I) is not essential or I is minimal. Suppose l(I) is essential and there exists an $I_1(\neq 0)$ such that $I_1 \subsetneq I$. Now $l(I) \cap I_1 \neq 0$ and $(l(I) \cap I_1)I = 0$ gives $l(I) \cap I_1 \in V_2$ and $II_1 = 0$ gives $I_1 \in V_2$. But $(l(I) \cap I_1)I = 0$, a contradiction. Now we consider the following cases.
 - (a) CaseI: If l(I) is essential. Suppose there exists a $P \in V_1 \setminus \{I\}$. If IP = 0, then $P \in V_2$, a contradiction. Hence $IP \neq 0$. Since $\Gamma_s(N)$ is connected, there exists a $K \in V_2$ such that PK = 0. Now $l(I) \cap IP \neq 0$ and $I(l(I) \cap IP) = 0$ gives that $l(I) \cap IP \in V_2$. But $(l(I) \cap IP)K = 0$, a contradiction.
 - (b) CaseII: If l(I) is not essential. Now suppose I is minimal. Then $I \cap P = P$ which gives that $(I \cap P)I = I^2 = 0$. Thus $I \cap P \in V_2$. But $(I \cap P)K = 0$, a contradiction. If I is not minimal, then $IP \subset I$ which gives $(IP \cap I)K = (IP)K = 0$. Thus $IP \cap I \in V_2$, a contradiction to $(IP \cap I)K = 0$.

Theorem 2.22. ([7]) A strongly semi-prime near-ring N satisfying the acc on left annihilators has no nonzero nil left N-subsets in it.

In the example 2.11, we see that every essential left ideal is essential as left N-subgroup also. We call such a near-ring a near-ring with total essential character. Moreover for near-ring with the a.c. on annihilators, we would like to refer [11].

Theorem 2.23. ([7]) If a strongly semi-prime near-ring N is with total essential character, then N satisfies the dcc (descending chain condition) on left annihilators.

Theorem 2.24: Let N be a strongly semi-prime near -ring with the acc on left annihilators satisfying total essential character and the left annihilators are distributively generated. Let I be a vertex of $\Gamma_s(N)$ such that every other vertex is adjacent to I. Then l(I) contains a left non-zero divisor.

Proof. Here l(I) is essential. Consider $I_1(\neq 0) \subseteq l(I)$ such that I_1 is non nilpotent and $l(I_1)$ is as large as possible. If $l(I_1) = 0$, we stop. If not, there exists a left N-subset $X(\neq 0)$ such that $XI_1 = 0$. But $X \cap l(I) \neq 0$ as l(I) is essential. Consider $a_1(\neq 0) \in X \cap l(I)$ such that $l(Na_1)$ is as large as possible. Now $Na_1 \subseteq$

$$\begin{split} X \cap l(I). & \text{If } l(Na_1) = 0, \text{ we stop. Suppose } l(Na_1) \neq 0. \text{ Now } Na_1I_1 \subseteq l(I) \text{ and } \\ Na_1 + I_1 \subseteq l(I). & \text{If } l(Na_1 + I) = 0, \text{ then we stop. If not, then } l(Na_1 + I_1) \cap l(I) \neq \\ 0. & \text{Again } l(Na_1 + I_1) = l(Na_1) \cap l(I_1) [\text{theorem } 2.4] \text{ gives } l(Na_1 + I_1) \cap l(I) = \\ l(Na_1) \cap l(I_1) \cap l(I) \neq 0. \text{ Now we consider } a_2(\neq 0) \in l(Na_1) \cap l(I_1) \cap l(I) \text{ with } \\ a_2 \text{ non nilpotent and } l(Na_2) \text{ is as large as possible. If } l(Na_2 + Na_1 + I_1) = 0, \\ \text{we stop. If not, proceeding in the same way, we get } l(I_1) \supseteq l(I_1) \cap l(Na_1) \supseteq \\ l(I_1) \cap l(Na_1) \cap l(Na_2) \supseteq \dots \text{ which is stationary. Hence we get a positive integer } \\ t \text{ such that } l(I_1) \cap l(Na_1) \cap \dots \cap l(Na_t) = l(I_1) \cap l(Na_1) \cap \dots \cap l(Na_{t+1}). \text{ Now } \\ l(I_1)+l(Na_1)+\dots+l(Na_t) = l(I_1)+l(Na_1)+\dots+l(Na_{t+1})=l(I_1+Na_1+\dots+Na_t) \cap \\ l(Na_{t+1}) \subseteq l(Na_{t+1}). \text{ Now } Na_{t+1} \subseteq l(I_1+Na_1+\dots+Na_t) \text{ gives } Na_{t+1} \subseteq l(Na_{t+1}) \\ \text{which gives } (Na_{t+1})^2 = 0, \text{ a contradiction. Thus } l(I_1+Na_1+\dots+Na_t) \cap l(I) = 0 \\ \\ \text{giving thereby } l(I_1+Na_1+\dots+Na_t) = 0 \text{ as } l(I) \text{ is essential.} \\ \Box$$

Acknowledgement. I would like to acknowledge the referees for their valuable suggestions.

References

- S.Akbari and A.Mohammadian, On the zero-divisor graph of a commutative ring, J.Algebra, 274(2)(2004), 847-855.
- [2] D. D. Anderson and M. Naser, Beck's Coloring of a commutative ring, J.Algebra, 159(1993), 500-541.
- [3] D. D. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J.Algebra, 217(1999), 434-447.
- [4] D. D. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J.Pure Appl.Algebra, 210(2007), 543-550.
- [5] I. Beck, Coloring of commutative rings, J.Algebra, **116**(1988), 208-226.
- [6] M. Behboodhi and Z. Rakeei, The annihilating ideal graph of commutative ring, J.Algebra Appl., 10(4)(2011), 727-739.
- [7] K. C. Chowdhury and H. Saikia, On near-ring with ACC on annihilators, Mathematica Pannonica, 8/2(1997), 177-185.
- [8] R. Diestel, *Graph Theory*, Springer-Verlag, New York, 1997.
- [9] G. Pilz., *Near-rings*, North Holland Publishing Company, 1977.
- [10] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9)(2003), 4425-4443.
- [11] B. K. Tamuli and K. C. Chowdhury, *Goldie Near-rings*, Bull. Cal. Math. Soc., 80(4)(1988), 261-269.
- [12] G. Wendt, On Zero-divisors in Near-Rings, International Journal of Algebra, 3(1)(2009), 21-32.