KYUNGPOOK Math. J. 56(2016), 1103-1113
http://dx.doi.org/10.5666/KMJ.2016.56.4.1103
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

On the Diameter, Girth and Coloring of the Strong ZeroDivisor Graph of Near-rings

Prohelika Das
Department of Mathematics, Cotton College State University, Guwahati 781001, Assam, India
e-mail: dasprohelika@yahoo.com

Abstract. In this paper, we study a directed simple graph $\Gamma_{s}(N)$ for a near-ring N, where the set $V^{*}(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I, J \in V^{*}(N), I$ is adjacent to J if and only if $I J=0$. Here, we deal with the diameter, girth and coloring of the graph $\Gamma_{s}(N)$. Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph $\Gamma_{s}(N)$.

1. Introduction

In this paper by a near-ring N, we mean a zero symmetric (right) near-ring not necessarily containing 1 . A subset I of N is left(right) N-subset of N if $N I \subseteq$ $I(I N \subseteq I)$ and I is invariant if it is both left as well as right N-subset of N. If I is a left N-subset of N, then the ideal $l(I)=\{x \in N \mid x I=0\}$ is the left annihilator of I. The set $Z_{l}=\{n \in N \mid$ for some $x \in N \backslash\{0\}, n x=0\}$ [12] is the set of left zero-divisors of N. We consider the strong zero-divisor graph $\Gamma_{s}(N)$, where the set $V^{*}(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I, J \in V^{*}(N), I$ is adjacent to J if and only if $I J=0$. If I and J are singleton sets, then the strong graph $\Gamma_{s}(N)$ reduced to the graph $\Gamma(N)$ of N where $x(\neq 0) \in N$ is adjacent to $y(\neq 0) \in N$ if and only if $x y=0$.

The concept of zero-divisor graph of a commutative ring was first introduced by Beck in [5]. Beck [5] was mainly interested in the coloring of the ring. This notion was redefined in [3] and they proved that such a graph is always connected and its diameter is always less than or equal to 3 . Anderson and Mulay in [4] studied diameter and girth of zero-divisor graph of a commutative ring. The notion of zerodivisor graph was extended to a non-commutative ring [1] and various properties of

[^0]diameter and girth were established. In [10], Redmond has generalised the notion of zero-divisor graph. For an ideal I of a commutative ring R, Redmond [10] defined an undirected graph $\Gamma_{I}(R)$ with vertices $\{x \in R \backslash I \mid x y \in I$ for some $y \in R \backslash I\}$ where distinct vertices x and y are adjacent if and only if $x y \in I$. Behboodhi [6] studied annihilator ideal graph dealing with the annihilators of ideals of a commutative ring.

In this paper, we study the graph theoretic aspect of a near-ring N which is a less symmetric algebraic structure with + and ., where both operations are noncommutative. An element $d \in N$ is distributive if $d\left(n_{1}+n_{2}\right)=d n_{1}+d n_{2}$ for any $n_{1}, n_{2} \in N$ and N_{d} denotes the set of all distributive elements of N. If $N=N_{d}$ and $(N,+)=<N_{d}>$, then N is distributive and distributively generated, respectively. For a distributive near-ring N with 1 , the graph $\Gamma(N)$ is the zero-divisor graph of a non-commutative ring N.

For basic definitions and results related to near-ring, we would like to mention Pilz [9].

Recall that a graph G is connected if there is a path between any two distinct vertices and is complete if every two vertices are adjacent. The distance between two distinct vertices x and y of G is the length of the shortest path from x to y and is denoted by $d(x, y)$. If no such path exists, then $d(x, y)=\infty$. The diameter of the graph G is the $\sup \{d(x, y) \mid x$ and y are distinct vertices of $G\}$ and is denoted by $\operatorname{diam} G$. The girth of G is the length of distance of the shortest cycle in G, denoted by $\operatorname{gr}(G)$. If no such cycle, then $\operatorname{gr}(G)=\infty$.

A left N-subset I of N is nilpotent if there exists a positive integer n such that $I^{n}=0$ and $I^{n-1} \neq 0$. The near-ring N is strongly semi-prime if it has no nonzero nilpotent invariant subsets. The notion of simple graph excludes the loops which is compatible to the strongly semi-prime character of the near-ring. The graph that we dealt here is a connected one and has diameter 3 or less, the proof of which follows in alike way to that of the theorem 2.3 [3]. It is due to the proposition 1.3.2 [8], if a graph G has a cycle, then the $\operatorname{gr}(G)$ is less than $2 \operatorname{diam} G+1$. In this paper, we study diameter and girth of the strong zero-divisor graphs of near-rings. Anderson [3] has conjectured that if a zero-divisor graph had a cycle, then its girth was 3 or 4. Haevey Mudd and Jamson gave an elegant proof to the conjecture of Anderson[3]. We establish a sufficient condition for diameter 3 for the graph $\Gamma_{s}(N)$ of the near-ring N. Existence of a cycle in the strong zero-divisor graph deserves exclusive interest. We prove that in a strongly semi-prime near-ring, if $\Gamma_{s}(N)$ has a cycle with an invariant vertex, then $\operatorname{gr}\left(\Gamma_{s}(N)\right) \leq 4$.

Moreover, in this paper, we deal with coloring of $\Gamma_{s}(N)$. The minimal numbers of colors so that no two adjacent elements of the graph G have same color is the chromatic number of G and is denoted by $\chi(G)$. A clique of G is the maximal connected subgraph of it. The number of vertices in the largest clique in the graph G is the clique G. Beck, [5] conjectured that $\chi(\Gamma(R))=\operatorname{clique}(\Gamma(R))$. But D.D.Anderson and M.Nasser [2] gave the counter example such as $R=$ $Z_{4}\left[[x, y, z] /\left(x^{2}-2, y^{2}-2, z^{2}, 2 x, 2 y, 2 z, x y, x z, y z-2\right)\right]$ for which $\chi(\Gamma(R))=5$ and clique $(\Gamma(R))=4$. Beck [5]has proved characterisation of rings with finite chromatic
number and showed that such rings have the ascending chain condition(acc) on annihilators. We here deal with the strong zero-divisor graph $\Gamma_{s}(N)$ having finite chromatic number. A left N-subset(ideal) I of N is essential in N if for any non zero left N-subset(ideal) A of $N, I \cap A \neq 0$. We prove that chromatic number of such a graph showing alike relation with the numbers of maximal annihilator ideals as well as with that of essential annihilator ideals of the near-ring. Also we deal with the strong zero-divisor graph $\Gamma_{s}(N)$ having bipartite character, i.e., the set of vertices of $\Gamma_{s}(N)$ can be decomposed into two disjoint parts such that every edge joints a vertex of one part to that of the other part. We establish that if $\Gamma_{s}(N)$ is bipartite where N is strongly semi-prime without unity, then N has exactly two invariant subsets I_{1} and I_{2} (say) provided $l\left(I_{1}\right)$ and $l\left(I_{2}\right)$ are essential. In addition to it we show that if $\Gamma_{s}(N)$ is bipartite with nonzero nilpotent invariant subsets in N, then $\Gamma_{s}(N)$ is a star graph.

The following are some examples of strong zero-divisor graphs.

Example 1.1.

(1) $\Gamma_{s}\left(Z_{4}\right) \cong \Gamma\left(Z_{4}\right)$

$$
\begin{gathered}
\bullet \\
\Gamma_{s}\left(Z_{4}\right) \text { or } \Gamma\left(Z_{4}\right)
\end{gathered}
$$

(2) $\Gamma_{s}\left(Z_{2} \times Z_{2}\right) \cong \Gamma\left(Z_{2} \times Z_{2}\right) \cong \Gamma_{s}\left(Z_{6}\right)\left(Z_{2} \times Z_{2} \nsupseteq Z_{6}\right)$

$$
\Gamma_{s}\left(Z_{2} \times Z_{2}\right), \Gamma\left(Z_{2} \times Z_{2}\right) \text { or } \Gamma_{s}\left(Z_{6}\right)
$$

(3) $\Gamma_{s}\left(\frac{Z_{3}[x]}{\left\langle x^{2}\right\rangle}\right) \cong \Gamma_{s}\left(\frac{Z_{2}[x, y]}{\left\langle x^{2}, y^{2}, x y\right\rangle}\right)$ but $\frac{Z_{3}[x]}{x^{2}} \not \not \frac{Z_{2[x, y]}}{\left\langle x^{2}, y^{2}, x y\right\rangle}$

(4) $\Gamma_{s}\left(\frac{Z_{4}[x]}{\left\langle x^{2}\right\rangle}\right) \not \equiv \Gamma_{s}\left(\frac{Z_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}\right)\left(\frac{Z_{4}[x]}{\left\langle x^{2}\right\rangle} \cong \frac{Z_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}\right)$

2. Main Results

In this section, we present results regarding diameter and girths of $\Gamma_{s}(N)$ in contrast to $\Gamma(N)$ in some cases. We note that the vertex 0 is adjacent to every other vertices which we exclude here for obvious reason.

A vertex I of $\Gamma_{s}(N)$ is an invariant vertex if it is an invariant N subset of the near-ring N. The right annihilator of a left N-subset I of N is $r(I)=\{x \in$ $N \mid I x=0\}$ which is a right N-subset of N, need not coincide to $l(I)$ in general. However in a strongly semi-prime near-ring N for an invariant subset $I, I l(I)=0$ as $(I l(I))^{2}=I(l(I) I) l(I)=0$ giving thereby $l(I) \subseteq r(I)$. Similarly $r(I) \subseteq l(I)$. Thus we state the following lemma.

Lemma 2.1. Let N be a strongly semi-prime near-ring. Then for an invariant subset I of $N, l(I)=r(I)$.

For a subset I of $N, l(I) \neq 0$ may not imply $l(I+J) \neq 0$ for any subset J of N. Below we present when it occurs.

Lemma 2.2. Let N be a near-ring such that the left annihilators are distributively generated. If I be a left N-subset with $l(I) \neq 0$ and $J \subseteq l(I)$ is a nilpotent left N-subset of N, then $l(I+J) \neq 0$.
Proof. Since $l(I) \neq 0$, there exists an $x(\neq 0) \in N$ such that $x I=0$. Now J is nilpotent gives a positive integer m such that $x J^{m}=0$ and $x J^{m-1} \neq 0$. Again $x J^{m-1} J=x J^{m}=0$ and $x J^{m-1} I=x J^{m-2} J I=0$. Thus $x J^{m-1}(I+J)=0$ giving thereby $x J^{m-1} \subseteq l(I+J)$. Thus $l(I+J) \neq 0$.

Thus in this lemma, we see that the nilpotency of $J \subseteq l(I)$ leads us to $l(I+J) \neq$ 0 . In the next, we present diameter of the strong zero-divisor graph $\Gamma_{s}(N)$, where N is a strongly semi-prime near-ring.

Theorem 2.3. Let N be a strongly semi-prime near-ring such that the left annihilators are distributively generated. If there exists a nilpotent vertex J and an invariant vertex I such that $l(I+J)=0$, then $\operatorname{diam}\left(\Gamma_{s}(N)\right)=3$.
Proof. We give the proof in two steps such as
(i) Step1:

Suppose $d(I, J)=2$. Let $M \in V^{*}(N)$ be such that, $I \longrightarrow M \longrightarrow J$ is a directed path. Then $I M=0$ and $M J=0$ which gives that $M \in r(I)=l(I)$. Now, $M(I+J)=0$ gives that $M(\neq 0) \subseteq l(I+J)$. Thus $l(I+J) \neq 0$, a contradiction.
(ii) Step2:

CaseI: If $I J \neq 0$, consider $M=l(I), N=l(J)$. Claim: $I \longrightarrow M=l(I) \longrightarrow$ $N=l(J) \longrightarrow J$ is a directed path. It is enough to show that $l(I) l(J)=0$. Suppose there exists an $x \in l(I), y \in l(J)$ such that $x y \neq 0$. Now $x \in l(I)=$ $r(I)$ gives $I x y=0$. Thus $x y \in r(I)=l(I)$ gives $x y I=0$. Again $y \in l(J)$ gives $x y J=0$. Now we get $x y(I+J)=0$ which gives $(0 \neq) x y \in l(I+J)$, a contradiction.
CaseII: If $I J=0$, then $(I+J)^{2} \subseteq I^{2}+J^{2}$. And $l(I+J)^{2}=0$, as $x \in l(I+J)^{2}$ gives $x(I+J) \subseteq l(I+J)$ giving thereby $x \in l(I+J)=0$. Since J is nilpotent, $q J$ is also so where $q \in l(I)$ with $q J^{2} \neq 0$. Now $q J \subseteq l(I)$ gives $l(I+q J) \neq 0$ [Lemma 2.2]. Again $I+q J \neq J$, otherwise $I \subseteq J$ implies $l(I+J)=l(J) \neq 0$, a contradiction. Hence $I+q J, J$ are distinct and $I+J=I+q J+J$ which gives $l(I+q J+J)=0$ and $(I+q J) J \neq 0$. Hence $d(I+q J, J)=3[$ caseI $]$.

Theorem 2.4. Let N be a strongly semi-prime near-ring such that the left annihilators are distributively generated. If I is an invariant N-subset of N containing a non nilpotent subset I_{1} with maximal left annihilators, then $d(I, J) \neq 2$ for any $J \subseteq l\left(I_{1}\right)$ with $l\left(I_{1}\right) \cap l(J)=0$.
Proof. Let $y \in l\left(I_{1}+J\right), y=\sum \pm d_{i}$ where $l\left(I_{1}+J\right)=<S>, d_{i} \in S$, a set of distributive elements of N. Now $d_{i}\left(I_{1}+J\right)=0$ gives $\left(d_{i} I_{1}+d_{i} J\right) i_{1}=0$ for each $i_{1} \in I_{1}$. Thus $d_{i} I_{1} i_{1}=0$ as $J \subseteq l\left(I_{1}\right)$ giving thereby $d_{i} \in l\left(I_{1}\right)=l\left(I_{1} i_{1}\right)$, since $l\left(I_{1}\right)$ is maximal. Now we get $d_{i} J=0$ which gives $d_{i} \in l\left(I_{1}\right) \cap l(J)$ for each i. Thus $y=0$ which gives $l\left(I_{1}+J\right)=0$ giving thereby $l(I+J)=0$. Hence $d(I, J) \neq 2$. [Theorem 2.3(i)]

Theorem 2.5. Let $P_{1}=l\left(I_{1}\right)$ and $P_{2}=l\left(I_{2}\right)$ be two prime ideals of N such that $P_{1} \cap P_{2}=0$, where I_{1} and I_{2} are invariant subsets of N. Then $I_{1} I_{2}=(0)=I_{2} I_{1}$.
Proof. For $I_{1} I_{2} \neq 0$, we get $I_{1} \nsubseteq l\left(I_{2}\right)=P_{2}$ and $I_{2} \nsubseteq r\left(I_{1}\right)=l\left(I_{1}\right)=P_{1}$. Now $P_{1} I_{1} \subseteq P_{2}$ gives $P_{1} \subseteq P_{2}$ as $I_{1} \nsubseteq P_{2}=l\left(I_{2}\right)$ giving thereby $P_{1} \cap P_{2}=P_{1} \neq 0$, a contradiction. Similarly, $I_{2} I_{1}=0$

Definition 2.6. Invariant associated of a near-ring N denoted by $I-\operatorname{Ass}(N)$ is the collection of $l\left(I_{i}\right)$'s, where each $l\left(I_{i}\right)$ is a prime ideal with invariant N-subset I_{i} such that $l\left(I_{i}\right) \cap l\left(I_{j}\right)=0$ for $i \neq j$.

Corollary 2.7. If in a strongly semi-prime near-ring $N,|(I-A s s N)| \geq 3$, then $\operatorname{gr}\left(\Gamma_{s}(N)\right)=3$.
Proof. Let $I-\operatorname{Ass}(N)=\left\{P_{1}, P_{2}, P_{3}\right\}$, then $P_{1}=l\left(I_{1}\right), P_{2}=l\left(I_{2}\right)$ and $P_{3}=l\left(I_{3}\right)$ for some invariant subsets I_{1}, I_{2} and I_{3} respectively. Then $I_{1} I_{2}=0, I_{2} I_{3}=0$ and
$I_{3} I_{1}=0$ [theorem 2.5]. Hence $I_{1} \longrightarrow I_{2} \longrightarrow I_{3} \longrightarrow I_{1}$ is a cycle of length 3 . Thus $g r\left(\Gamma_{s}(N)\right)=3$.

Theorem 2.8. If $|I-A s s N| \geq 5$, then $\Gamma_{s}(N)$ is not a planner graph.
Proof. Let $I-$ Ass $N=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$ where $P_{i}=l\left(I_{i}\right)$ (say), $1 \leq i \leq 5$. Here $I_{i} I_{j}=0$ for $i \neq j$ [theorem 2.5]. Thus the graph $\Gamma_{s}(N)$ contains Kuratowski's first graph. Hence $\Gamma_{s}(N)$ is not planner.

Next we determine the girth of the graph $\Gamma_{s}(N)$ of a stongly semi-prime nearring N if it has a cycle with at least one invariant vertex.

Theorem 2.9. Let N be a strongly semi-prime near-ring. If $\Gamma_{s}(N)$ contains a cycle with an invariant vertex in it, then $\operatorname{gr}\left(\Gamma_{s}(N)\right) \leq 4$.
Proof. Assume $n=\operatorname{gr}\left(\Gamma_{s}(N)\right)$ is 5,6 or 7 . Let $I_{1} \longrightarrow I_{2} \longrightarrow I_{3} \ldots . \longrightarrow I_{n} \longrightarrow$ $I_{1} \ldots$ (i) be a cycle with minimal length n. Let I_{i} be an invariant vertex. Now consider the subgraph $\Gamma_{s}^{\prime}(N)$ of $\Gamma_{s}(N)$ spanned by the vertices $I_{1}, I_{2}, \ldots, I_{i} I_{i+2}$. If $I_{i} I_{i+2} \neq$ I_{k} for any $k, 1 \leq k \leq n$, then $I_{i-1} \longrightarrow I_{i} \longrightarrow I_{i+1} \longrightarrow I_{i} I_{i+2} \longrightarrow I_{i-1},(i \geq 2)$ is a cycle of length 4 . Let $I_{i} I_{i+2}=I_{k}$ for some k. Now we show the following.
(i) $I_{i} I_{i+2} \neq I_{i+1}$. If $I_{i} I_{i+2}=I_{i+1}$, then $\left(I_{i} I_{i+2}\right) I_{i-1}=I_{i+1} I_{i-1}$. Now $I_{i+1} I_{i-1}=$ $\left(I_{i} I_{i+2}\right) I_{i-1} \subseteq I_{i} I_{i-1}=0$, which gives $I_{i+1} I_{i-1}=0$. Thus $I_{i-1} \longrightarrow I_{i} \longrightarrow$ $I_{i+1} \longrightarrow I_{i-1}$ is a cyclic, a contradiction to (i).
(ii) $I_{i} I_{i+2} \neq I_{i-1}$. For otherwise, $I_{i+1}\left(I_{i} I_{i+2}\right)=I_{i+1} I_{i-1}$ which gives $I_{i+1} I_{i-1}=$ $\left(I_{i+1} I_{i}\right) I_{i+2}=0$. Thus $I_{i-1} \longrightarrow I_{i} \longrightarrow I_{i+1} \longrightarrow I_{i-1}$ is a cycle, a contradiction to (i).
(iii) $I_{i} I_{i+2} \neq I_{i+3}$. If $I_{i} I_{i+2}=I_{i+3}$, then we get $I_{i+3} I_{i+1}=\left(I_{i} I_{i+2}\right) I_{i+1} \subseteq$ $I_{i} I_{i-1}=0$, gives the cycle $I_{i+1} \longrightarrow I_{i+2} \longrightarrow I_{i+3} \longrightarrow I_{i+1}$, a contradiction.

Now $I_{i} I_{i+2}$ is adjacent to three distinct vertices I_{i-1}, I_{i+1} and I_{i+3}. Thus there exists an extra edge in $\Gamma_{s}^{\prime}(N)$ which is not in the original cycle. Hence there must exist a smaller cycle $\Gamma_{s}^{\prime}(N)$, a contradiction.

Now we present coloring of the strong zero-divisor graph $\Gamma_{s}(N)$ of N.
Theorem 2.10. Let N be a strongly semi-prime near-ring. If N has k number of maximal ideals of the form $l\left(I_{i}\right)$ where I_{i} 's are invariant subsets such that $l\left(I_{i}\right) \cap$ $l\left(I_{j}\right)=0$ for $i \neq j, 1 \leq i, j \leq k$, then $\chi\left(\Gamma_{s}(N)\right) \leq k+1$.
Proof. First we give k distinct colors to I_{i} 's and an extra color to 0 . Here $I_{i} I_{j}=0$ for $i \neq j$ [Theorem 2.6]. Now we color the invariant vertices. If $I(\neq 0)$ be an arbitrary invariant vertex, we give to I the color which is given to $I_{n}^{t h}$ vertex, where n is the minimal $\left\{i \mid l(I) \nsubseteq l\left(I_{i}\right)\right\}$. Let I and J be two invariant vertices such that same color of I_{k} is given to them. Then $l(I) \nsubseteq l\left(I_{k}\right)$ and $l(J) \nsubseteq l\left(I_{k}\right)$. If $I J=0$, then $I \subseteq l(J) \nsubseteq l\left(I_{k}\right)$ and $J \subseteq r(I)=l(I) \nsubseteq l\left(I_{k}\right)$ which leads to $I J \nsubseteq l\left(I_{k}\right)$, a contradiction. Next we show that these $k+1$ colors are enough to color the whole graph. Let $I(\neq 0)$ be a left N-subset of N and $I \in V^{*}(N)$.

Consider $I l(J)(\neq 0)$ with some $J \in V^{*}(N)$. If $I l(J)=0$ for any $J \in V^{*}(N)$, then $I l\left(I_{n}\right)=0$ for all $\mathrm{n}, 1 \leq n \leq k$. Thus $l\left(I_{n}\right) \subseteq l(I)$ gives $l\left(I_{n}\right)=l(I)$ for all n, a contradiction. Now we give the color to I which is given to the invariant vertex $I l(J)$. Here $\operatorname{IIl}(J) \neq 0$, for otherwise $I \subseteq l(I l(J))=r(I l(J))$ which gives $I l(J) I=0$, giving thereby $(I l(J))^{2}=0$, a contradiction. Suppose I and $I^{/}$has the color of I_{k} (say). Then we get some $J, J^{\prime} \in V^{*}(N)$ such that $I l(J)$ and $I^{\prime} l\left(J^{\prime}\right)$ are given the color of I_{k}. Now $l(I l(J)) \nsubseteq l\left(I_{k}\right)$ and $l\left(I^{\prime} l\left(J^{\prime}\right)\right) \nsubseteq l\left(I_{k}\right)$. If $(I l(J))\left(I^{\prime} l\left(J^{\prime}\right)\right)=0$, then $I l(J) \subseteq l\left(I^{\prime} l\left(J^{\prime}\right)\right) \nsubseteq l\left(I_{k}\right)$ and $I^{\prime} l\left(J^{\prime}\right) \subseteq r(I l(J))=l(I l(J)) \nsubseteq l\left(I_{k}\right)$ which implies that $(I l(J))\left(I^{\prime} l\left(J^{/}\right)\right) \nsubseteq l\left(I_{k}\right)$, a contradiction. Now we show that I and I^{\prime} are not adjacent. If $I I^{\prime}=0$, then $I^{\prime} l\left(J^{\prime}\right)=0$ gives $\left(I^{\prime} l\left(J^{\prime}\right)\right) I=0$. Thus $\left(I^{\prime} l\left(J^{\prime}\right)\right)(I l(J))=0$ gives $(I l(J))^{2}=\left(I^{\prime} l\left(J^{\prime}\right)\right)^{2}=0$, a contradiction.

Example 2.11. Consider $Z_{6}=\{0,1,2,3,4,5\}$ which is a near-ring with respect to the tables given below. The only left N subsets are $I_{1}=\{0,3\}, I_{2}=\{0,2,4\}$ and $I_{3}=\{0,2,3.4\}$ which are invariant also and $l\left(I_{1}\right)=I_{2}$ and $l\left(I_{2}\right)=I_{1}$ are two maximal ideals of the annihilator ideal form. Here the chromatic number $\chi\left(\Gamma_{s}\left(Z_{6}\right)\right)$ is $2+1=3$, i.e., $\chi\left(\Gamma_{s}\left(Z_{6}\right)\right)$ is equal to $p+1$, where p is the number of maximal ideals of the form of left annihilator.

Table

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	0	1	2	3	4	5

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

In the results below, we deal with the essentiality of annihilator ideals in a near-ring N to determine the chromatic number of $\Gamma_{s}(N)$.
Theorem 2.12. Let N be a near-ring with unity, then the following two are equivalent.
(i) If for a left N-subset I of $N, l(I)$ is essential, then $I=0$.
(ii) N is strongly semi-prime.

Proof.
(a) $(i) \Rightarrow($ ii $)$ Suppose J is an invariant N-subset of N such that $J^{2}=0$. Let A be a nonzero ideal of N. If $A J=0$ then $A=A \cap l(J) \neq 0$. If $A J \neq 0$, then $A J(\neq 0) \subseteq A \cap l(J)$. Thus in either cases $l(J)$ is essential. Hence $J=0$.
(b) $(i i) \Rightarrow(i)$ Let I be a left N-subset such that $l(I)$ is essential. Let $J=$ $l(I) \cap I N$. Now $J^{2} \subseteq l(I) I N=0$. Thus $J=0$, i.e., $l(I) \cap I N=0$ which gives $I N=0$ as $l(I)$ is essential. Hence $I=0$.

Example 2.13. Consider the ring $Z_{6}=\{0,1,2,3,4,5\}$ which is strongly semiprime with unity. Here $I_{1}=l\left(I_{2}\right)=\{0,3\}$ and $I_{2}=l\left(I_{1}\right)=\{0,2,4\}$ are the only nonzero ideals and $Z_{6}=\operatorname{Ann}(0)$ is the only essential ideal.

Example 2.14. $Z_{4}=\{0,1,2,3\}$ is a ring with unity. Here Z_{4} is not strongly semi-prime as for $I=\{0,2\}, I^{2}=0$ and $l(I)$ is an essential ideal of Z_{4}
Theorem 2.15: Let N be a near-ring and $x \in N$ be such that every vertex $v \in \Gamma(N)$ is adjacent to x. Then $l(x)$ is an essential ideal of N.

Theorem 2.16. Let N be a strongly semi-prime near-ring. If $\Gamma(N)$ has no infinite clique, then the near-ring N satisfies the acc on essential left N-subsets.
Proof. Let $I_{1}<I_{2}<I_{3}<\ldots .$. be an ascending chain for left N-subsets, where each I_{i} 's are essential in N. Suppose $I_{i}<I_{i+1}$. Now $I_{i} \cap l\left(I_{i}\right)<I_{i+1} \cap l\left(I_{i}\right)$. Here $I_{i} \cap l\left(I_{i}\right) \neq 0$ and $I_{i+1} \cap l\left(I_{i}\right) \neq 0$. Also $I_{i} \cap l\left(I_{i}\right) \neq I_{i+1} \cap l\left(I_{i}\right)$ for otherwise $\left(I_{i} \cap l\left(I_{i}\right)\right)^{2}=\left(I_{i+1} \cap l\left(I_{i}\right)\right)\left(I_{i} \cap l\left(I_{i}\right)\right) \subseteq l\left(I_{i}\right) I_{i}=0$, a contradiction. Now consider an element $x_{n} \in I_{n} \cap l\left(I_{n-1}\right)$ such that $x_{n} \notin I_{n-1} \cap l\left(I_{n-1}\right)$. Here for $i \neq j$ (suppose $i>j), x_{i} x_{j} \in\left(I_{i} \cap l\left(I_{i-1}\right)\right)\left(I_{j} \cap l\left(I_{j-1}\right)\right) \subseteq l\left(I_{i-1}\right) I_{j}=0$. Thus we get an infinite clique in N, a contradiction.

Theorem 2.17. Let N be a strongly semi-prime near-ring without unity. If $\Gamma_{s}(N)$ has no infinite clique, then N satisfies the acc on invariant subsets having essential left annihilators.
Proof. Let $I_{1}<I_{2}<I_{3} \ldots$. be an ascending chain of invariant subsets with essential left annihilators. Suppose $I_{i} \supsetneqq I_{i+1}$. Let $x_{i+1}(\neq 0) \in I_{i+1} \backslash I_{i}$. Now consider $J_{i+1}=l\left(I_{i+1}\right) \cap\left\langle x_{i+1}\right\rangle \neq 0$, where $\left\langle x_{i+1}\right\rangle$ is the ideal generated by x_{i+1}. Here $J_{i} J_{j}=0$ for $i<j$, a contradiction.

Theorem 2.18. Let N be a strongly semi-prime near-ring without unity and $l\left(I_{1}\right), l\left(I_{2}\right), \ldots . l\left(I_{n}\right)$ are the only essential N-subsets of N with each I_{i} is an ideal. Then $\chi\left(\Gamma_{s}(N)\right) \leq n+1$.

Proof. We give n distinct colors to $l\left(I_{i}\right)$'s. Here $I_{i} I_{i+1}=0$ since for otherwise $\left(l\left(I_{i}\right) \cap I_{i} I_{i+1}\right) \neq 0$. Now $\left(l\left(I_{i}\right) \cap I_{i} I_{i+1}\right)^{2} \subseteq l\left(I_{i}\right) I_{i} I_{i+1}=0$ which gives $l\left(I_{i}\right) \cap I_{i} I_{i+1}=$ 0 , a contradiction. Now let I be an arbitrary vertex.
(i) CaseI: If $I_{i} \subseteq I$ for some i, then give the color of I_{k} to I if k is the $\max \left\{i \mid I_{i} \subset\right.$ $I\}$. Here I and I_{k} are not adjacent since for otherwise $I \subseteq l\left(I_{k}\right)$ together with $I_{k} \subseteq I$ gives that $\left(I_{k}\right)^{2}=0$, a contradiction.
(ii) CaseII: If $I_{i} \nsubseteq I$ for any i, then there exists an $x \in I_{i}$ such that $x \notin I$. Now consider the ideal generated by x denoted $\langle x\rangle$ which is clearly non zero. Thus $l\left(I_{i}\right) \cap<x>\neq 0$. But $\left(l\left(I_{i}\right) \cap<x>\right)^{2} \subseteq l\left(I_{i}\right) I_{i}=0$, a contradiction.

Suppose two distinct vertices I and J are given the same color of I_{k} (say). Here $I J \neq 0$ for otherwise $I \subseteq l(J)$ which leads $I_{k} \subset I \subseteq l(J)$. Thus we get $I_{k}^{2}=0$ as $I_{k} \subset J$, a contradiction.

Now we mention the following notes:
(i) Note 1: In a near-ring $N, \chi\left(\Gamma_{s}(N)\right)=2$ if and only if for any two nonzero $I, J \in V^{*}(N), I J \neq 0$ whenever $I \neq 0, J \neq 0$. For, suppose there exists $I \neq 0$ and $J \neq 0$ such that $I J=0$. Then $\{0, I, J\}$ is a clique. Thus clique $\left(\Gamma_{s}(n)\right)>\chi\left(\Gamma_{s}(N)\right)$, a contradiction.
(ii) Note 2: In a strongly semi-prime near-ring without unity, every essential ideal of the form $l\left(I_{i}\right)$ with invariant I_{i} is maximal. For suppose $l\left(I_{i}\right)$ is not maximal, there exists a proper ideal K of N such that $l\left(I_{i}\right) \subset K \subset N$. Now consider the ideal J generated by $I_{i} x(\neq 0)$ for some $x(\neq 0) \in K$. Here $l\left(I_{i}\right) \cap J \neq 0$ but $\left(l\left(I_{i}\right) \cap J\right)^{2}=0$, a contradiction.

Example 2.19. Consider the set $Z_{\left(p^{\infty}\right)}$ of all rational numbers of the form $\frac{m}{p^{k}}$ such that $0 \leq \frac{m}{p^{k}}<1$, where p is a fixed prime number, n runs through all nonnegative integers. Then $Z\left(p^{\infty}\right)$ is a ring with respect to addition modulo 1 and multiplication defined as $a b=0$ for all $a, b \in Z\left(p^{\infty}\right)$. It is to be noted that each subgroup of $Z\left(p^{\infty}\right)$ is an ideal of it and the only proper ideals of $Z\left(p^{\infty}\right)$ are of the form $I_{k-1}=\left\{0, \frac{1}{p^{k-1}}, \frac{2}{p^{k-2}}, \ldots ., \frac{p^{k-1}-1}{p^{k}-1}\right\}$ for each positive integer k. Thus the ideals are in a chain $0<I_{1}<I_{2}<\ldots$. and each I_{i} 's are essential $Z_{p \infty}$ is a reduced ring without unity. But here $l\left(I_{k-1}\right)=0$ for all k which are not essential. Here $I_{i} I_{j} \neq 0$ for any i, j and $\chi\left(\Gamma_{s}\left(Z_{p^{\infty}}\right)\right)=2$.

Example 2.20. Consider the set $M(N)=\left(\begin{array}{cc}Z_{2} & N \\ 0 & Z_{2}\end{array}\right)$ which is the set of elements of the form $\left\{\left(\begin{array}{cc}0 & n \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & n \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & n \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)\right\}$, where $n \in N$. Here $M(N)$ is a near-ring with respect to ordinary addition and multiplication $(\bar{x} n=$ $x n, \bar{x} \in Z_{2}$) with unity which is not strongly semi-prime as
$\left(\begin{array}{cc}0 & n \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{cc}0 & n \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. If N is not finite, then $M(N)$ has infinite invariant sets $I_{i}(i=1,2,3, \ldots)$ such that $l\left(I_{i}\right)=\left\{\left(\begin{array}{cc}0 & n \\ 0 & 0\end{array}\right), \left.\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \right\rvert\, n \in N\right\}$ is essential and $\chi\left(\Gamma_{s}(M(N))\right)=\infty$.

Theorem 2.21. Let $\Gamma_{s}(N)$ be a bipartite graph with two non-empty parts V_{1} and V_{2}. Then
(i) If N is strongly semi-prime without unity, then N has exactly two invariant N subsets I_{1} and I_{2}, where $l\left(I_{1}\right)$ and $l\left(I_{2}\right)$ are essential.
(ii) If N is not strongly semi-prime, then $\Gamma_{s}(N)$ is a star graph with more than one vertices.

Proof.
(i) Let I_{1}, I_{2} and I_{3} be three distinct invariant N-subsets of N such that $l\left(I_{i}\right)$'s are essential. Now $J_{1}=l\left(I_{1}\right) \cap I_{2} \neq 0, J_{2}=l\left(I_{3}\right) \cap I_{2} \neq 0$ and $J_{3}=l\left(I_{2}\right) \cap I_{3} \neq$ 0 . Here $J_{3} \neq J_{1}$ for otherwise $\left(l\left(I_{2}\right) \cap I_{3}\right)^{2}=\left(l\left(I_{2}\right) \cap I_{3}\right)\left(l\left(I_{1}\right) \cap I_{2}\right)=0$, a contradiction. Thus $\left(l\left(I_{2}\right) \cap I_{3}\right)\left(l\left(I_{1}\right) \cap I_{2}\right)=0$. Similarly $\left(l\left(I_{1}\right) \cap I_{2}\right)\left(l\left(I_{3}\right) \cap\right.$ $\left.I_{1}\right)=0$ and $\left(l\left(I_{3}\right) \cap I_{1}\right)\left(l\left(I_{2}\right) \cap I_{3}\right)=0$. Thus $J_{1} \longrightarrow J_{2} \longrightarrow J_{3} \longrightarrow J_{1}$ is a cycle, a contradiction.
(ii) Suppose N is not strongly semi-prime and let $I \neq 0$ be an invariant N subset such that $I^{2}=0$. Assume that $I \in V_{1}$. We show that $V_{1}=\{I\}$. Here either $l(I)$ is not essential or I is minimal. Suppose $l(I)$ is essential and there exists an $I_{1}(\neq 0)$ such that $I_{1} \nsubseteq I$. Now $l(I) \cap I_{1} \neq 0$ and $\left(l(I) \cap I_{1}\right) I=0$ gives $l(I) \cap I_{1} \in V_{2}$ and $I I_{1}=0$ gives $I_{1} \in V_{2}$. But $\left(l(I) \cap I_{1}\right) I=0$, a contradiction. Now we consider the following cases.
(a) CaseI: If $l(I)$ is essential. Suppose there exists a $P \in V_{1} \backslash\{I\}$. If $I P=0$, then $P \in V_{2}$, a contradiction. Hence $I P \neq 0$. Since $\Gamma_{s}(N)$ is connected, there exists a $K \in V_{2}$ such that $P K=0$. Now $l(I) \cap I P \neq 0$ and $I(l(I) \cap I P)=0$ gives that $l(I) \cap I P \in V_{2}$. But $(l(I) \cap I P) K=0$, a contradiction.
(b) CaseII: If $l(I)$ is not essential. Now suppose I is minimal. Then $I \cap$ $P=P$ which gives that $(I \cap P) I=I^{2}=0$. Thus $I \cap P \in V_{2}$. But $(I \cap P) K=0$, a contradiction. If I is not minimal, then $I P \subset I$ which gives $(I P \cap I) K=(I P) K=0$. Thus $I P \cap I \in V_{2}$, a contradiction to $(I P \cap I) K=0$.

Theorem 2.22. ([7]) A strongly semi-prime near-ring N satisfying the acc on left annihilators has no nonzero nil left N-subsets in it.

In the example 2.11, we see that every essential left ideal is essential as left N subgroup also. We call such a near-ring a near-ring with total essential character. Moreover for near-ring with the a.c.c on annihilators, we would like to refer [11].

Theorem 2.23. ([7]) If a strongly semi-prime near-ring N is with total essential character, then N satisfies the dcc (descending chain condition) on left annihilators.

Theorem 2.24: Let N be a strongly semi-prime near -ring with the acc on left annihilators satisfying total essential character and the left annihilators are distributively generated. Let I be a vertex of $\Gamma_{s}(N)$ such that every other vertex is adjacent to I. Then $l(I)$ contains a left non-zero divisor.
Proof. Here $l(I)$ is essential. Consider $I_{1}(\neq 0) \subseteq l(I)$ such that I_{1} is non nilpotent and $l\left(I_{1}\right)$ is as large as possible. If $l\left(I_{1}\right)=0$, we stop. If not, there exists a left N-subset $X(\neq 0)$ such that $X I_{1}=0$. But $X \cap l(I) \neq 0$ as $l(I)$ is essential. Consider $a_{1}(\neq 0) \in X \cap l(I)$ such that $l\left(N a_{1}\right)$ is as large as possible. Now $N a_{1} \subseteq$
$X \cap l(I)$. If $l\left(N a_{1}\right)=0$, we stop. Suppose $l\left(N a_{1}\right) \neq 0$. Now $N a_{1} I_{1} \subseteq l(I)$ and $N a_{1}+I_{1} \subseteq l(I)$. If $l\left(N a_{1}+I\right)=0$, then we stop. If not, then $l\left(N a_{1}+I_{1}\right) \cap l(I) \neq$ 0. Again $l\left(N a_{1}+I_{1}\right)=l\left(N a_{1}\right) \cap l\left(I_{1}\right)\left[\right.$ theorem 2.4] gives $l\left(N a_{1}+I_{1}\right) \cap l(I)=$ $l\left(N a_{1}\right) \cap l\left(I_{1}\right) \cap l(I) \neq 0$. Now we consider $a_{2}(\neq 0) \in l\left(N a_{1}\right) \cap l\left(I_{1}\right) \cap l(I)$ with a_{2} non nilpotent and $l\left(N a_{2}\right)$ is as large as possible. If $l\left(N a_{2}+N a_{1}+I_{1}\right)=0$, we stop. If not, proceeding in the same way, we get $l\left(I_{1}\right) \supseteq l\left(I_{1}\right) \cap l\left(N a_{1}\right) \supseteq$ $l\left(I_{1}\right) \cap l\left(N a_{1}\right) \cap l\left(N a_{2}\right) \supseteq \ldots \ldots$. which is stationary. Hence we get a positive integer t such that $l\left(I_{1}\right) \cap l\left(N a_{1}\right) \cap \ldots \cap l\left(N a_{t}\right)=l\left(I_{1}\right) \cap l\left(N a_{1}\right) \cap \ldots . \cap l\left(N a_{t+1}\right)$. Now $l\left(I_{1}\right)+l\left(N a_{1}\right)+\ldots .+l\left(N a_{t}\right)=l\left(I_{1}\right)+l\left(N a_{1}\right)+\ldots+l\left(N a_{t+1}\right)=l\left(I_{1}+N a_{1}+\ldots .+N a_{t}\right) \cap$ $l\left(N a_{t+1}\right) \subseteq l\left(N a_{t+1}\right)$. Now $N a_{t+1} \subseteq l\left(I_{1}+N a_{1}+\ldots+N a_{t}\right)$ gives $N a_{t+1} \subseteq l\left(N a_{t+1}\right)$ which gives $\left(N a_{t+1}\right)^{2}=0$, a contradiction. Thus $l\left(I_{1}+N a_{1}+\ldots .+N a_{t}\right) \cap l(I)=0$ giving thereby $l\left(I_{1}+N a_{1}+\ldots .+N a_{t}\right)=0$ as $l(I)$ is essential.

Acknowledgement. I would like to acknowledge the referees for their valuable suggestions.

References

[1] S .Akbari and A .Mohammadian, On the zero-divisor graph of a commutative ring, J.Algebra, 274(2)(2004), 847-855.
[2] D. D. Anderson and M. Naser, Beck's Coloring of a commutative ring, J.Algebra, 159(1993), 500-541.
[3] D. D. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J.Algebra, 217(1999), 434-447.
[4] D. D. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J.Pure Appl.Algebra, 210(2007), 543-550.
[5] I. Beck, Coloring of commutative rings, J.Algebra, 116(1988), 208-226.
[6] M. Behboodhi and Z. Rakeei, The annihilating ideal graph of commutative ring, J.Algebra Appl., 10(4)(2011), 727-739.
[7] K. C. Chowdhury and H. Saikia, On near-ring with ACC on annihilators, Mathematica Pannonica, 8/2(1997), 177-185.
[8] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[9] G. Pilz., Near-rings, North Holland Publishing Company, 1977.
[10] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9)(2003), 4425-4443.
[11] B. K. Tamuli and K. C. Chowdhury, Goldie Near-rings, Bull. Cal. Math. Soc., 80(4)(1988), 261-269.
[12] G. Wendt, On Zero-divisors in Near-Rings, International Journal of Algebra, 3(1)(2009), 21-32.

[^0]: Received May 8 2014; revised October 6, 2014; accepted January 13, 2015. 2010 Mathematics Subject Classification: 16Y30, 13A15.
 Key words and phrases: Near-ring, N-subsets, diameter, girth, essential ideal, chromatic number, left annihilator.

