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ABSTRACT. For a distance-regular graph with valency k, second largest eigenvalue r and

2 2
diameter D, it is known that r > min{w,%} if D=3andr > @ if

D > 4, where A = a1. This result can be generalized to the class of edge-regular graphs.

For an edge-regular graph with parameters (v, k,\) and diameter D > 4, we compare

2
w with the local valency A to find a relationship between the second largest eigen-

value and the local valency. For an edge-regular graph with diameter 3, we look at the
A—at+y/ (A=p)2+4(k—R) k(k—1—X\)

2 v—k—1
local valency A to give a relationship between the second largest eigenvalue and the local

number

, where i = and compare this number with the

valency. Also, we apply these relationships to distance-regular graphs.

1. Introduction

In 2010, Koolen and Park [4] gave a lower bound on the second largest eigenvalue
of a distance-regular graph with diameter 3 in terms of valency k and intersection
numbers a; and ag.

Theorem 1.1. (¢f. [4, Lemma 6]) Let T be a distance-regular graph with valency
k and diameter 3. Then the second largest eigenvalue r of I satisfies

.{)\+\/)\2+4kz }
r > min f,ag ,

where A = ay.
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In 2011, Koolen, Park and Yu [6] generalized this theorem to the class of
distance-regular graphs with diameter at least 4. We note that in [6, Theorem
3.1], they assumed that the valency k is at least three, but it is also true for k = 2.

Theorem 1.2. (c¢f. [6, Theorem 3.1]) Let T be a distance-regular graph with valency
k, diameter D > 4. Then the second largest eigenvalue v of T' satisfies

s A+ VA2 44k
- 2 b

where A = ay.

The proof of Theorem 1.2 also works for edge-regular graphs with diameter
D > 4. And for edge-regular graphs I" with diameter 3, the proof of Theorem 1.1
works if we replace ag by as(z) = m Z asz(x,y), where x is a vertex of T
y€ls(x)
In this paper, we will try to give a lower bound on the second largest eigenvalue
r of an edge-regular graph with parameters (v, k, \) in terms of A. In order to do

AtvAi+dk V’;Z“‘k with the local valency A for edge-regular graphs with

diameter D > 4. Since a lower bound on 23k does not give an immediate
lower bound on the second largest eigenvalue of an edge-regular graph with diameter

. . A—fity/ =) 2 +4(k—j1 _ 1
3, we will consider the number CRaVAl 2“) A “), where i = ’“(J“Tl_f‘) Once we

have a relationship between r and A for edge-regular graphs with diameter D > 3,
we apply it to the class of distance-regular graphs with diameter D > 3. Then we
obtain that for a distance-regular graph with diameter D > 4, the second largest
eigenvalue is at least A + /2. For a distance-regular graph with diameter 3, we
can show that the second largest eigenvalue is larger than A 4 1 if the number v of
vertices is large compared to Ak.

so, we will compare

2. Definitions and Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The
reader is referred to [1] for more information. Let I' be a connected graph with
vertex set V(I'). The distance dr(z,y) between two vertices x,y € V(T') is the
length of a shortest path between x and y in I'. The diameter D = D(T') of T is
the maximum distance between any two vertices of I'. For each x € V(I'), let I';(z)
be the set of vertices of T' at distance ¢ from z (0 < ¢ < D). In addition, define
I'_1(z) =0 and I'pi1(x) = 0. For the sake of simplicity, let I'(z) = I';(z) and we
denote = ~ y if two vertices z and y are adjacent. In particular, I is reqular with
valency k if k = |['(x)| holds for all z € V(T'). The graph T’ is called edge-regular
with parameters (v, k, A) if it has v vertices, is regular with valency k and satisfies
that any two adjacent vertices of I' have A commnon neighbors. Note that for any
vertex = of an edge-regular graph with parameters (v, k, A), the subgraph induced
on I'(x) is a regular graph with valency .
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For a connected graph I'' with diameter D, we choose two vertices x, y at distance
i = dr(z,y), and consider the numbers ¢;(z,y) = |Ii—1(x) N T(y)|, ai(z,y) =
ITi(z) N T(y)| and b;(z,y) = [Tip1(z) NT(y)] (0 < ¢ < D). We say that the
intersection number ¢; (a; and b;, respectively) exists if the number ¢;(x,y) (a;(x,y)
and b;(x,y), respectively) does depend only on i = dr(x,y) not on the choice of
x and y with dr(z,y) = i. Set ¢cg = bp = 0 and observe ag = 0 and ¢; = 1. A
connected graph I" with diameter D is called a distance-reqular graph if there exist
intersection numbers ¢;, a;,b; for all ¢ = 0,1,...,D. Note that a distance-regular
graph is edge-regular with parameters (v, by, ay).

For any connected graph I" with diameter D, the distance-i graphT; (0 < i < D)
is the graph whose vertices are those of I' and edges are the 2-subsets of vertices at
mutual distance ¢ in I'. In particular, I'y = I'. An antipodal graph is a connected
graph I' with diameter D > 1 for which its distance-D graph I'p is a disjoint union
of complete graphs. A graph I is called bipartite if it has no odd cycle. (If T" is a
distance-regular graph with diameter D and bipartite, then a1 = a2 = ... =ap =
0.)

For a connected graph I' with diameter D, the adjacency matric A = A(T) is
the matrix whose rows and columns are indexed by V(I'), where the (z,y)-entry
is 1 whenever x ~ y and 0 otherwise. The eigenvalues of I' are the eigenvalues of
A(T). For a partition II = {Py, Ps,..., Py} of the vertex set V(I'), we look at the
numbers 3;; (1 <4,j, <), where vertices in P; have averagely 3;; neighbors in P;.
Then the guotient matriz Q = Q(II) corresponding to the partition II is the ¢ x ¢
matrix whose (4, j)-entry is §;;. Note that the eigenvalues of the quotient matrix @
interlace the eigenvalues of I (see [2, Corollary 2.5.4]).

3. Edge-regular Graphs with Diameter at Least 4

Recall that the same proof of Theorem 1.2 also works for any edge-regular graph
I' with parameters (v,k,A) and diameter D > 4, and hence the second largest
eigenvalue 7 of T is at least AF-VA“+4k W.

In this section, for an edge-regular graph I' with parameters (v, k, \), second

largest eigenvalue r and diameter D > 4, we compare AtvAZ+dk V’;Hk with the local

valency A to find a relationship between r and A. Note that if £ = 2, then I' is an
n-gon for n > 8 and r > A + 1.

Lemma 3.1. Let T’ be an edge-regular graph with parameters (v,k,X). Then for
any positive integer t, 2EVAFAE W > A+t if and only if A < %k —t.

Proof. Let t be a positive integer. Clearly, Hi“;“‘k > A\ 4+t is equivalent to
VA2 + 4k > XN+ 2t. Since A+ 2t > 0, we know that VA2 + 4k > A+ 2t is equivalent
to A2 4+ 4k > (A +2t)% = A2 + 4\ + 412, As A2 + 4k > A% + 4t + 442 is equivalent
to thA < k — t2, we conclude that AFYA 44k W > A+t if and only if A < %k — t. This
finishes the proof. O
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Remark 3.2. (i) As A >0, the condition A < # — ¢ is meaningful when & > #2.

(ii) For t = 1, we have that A+VAZ+dk V)2‘2+4k > A+ 1if and only if A < &k —1. And
A < k — 1 is true except when the graph is a complete graph. (It also

. . ey V/
can be obtained from an easy calculation, 2+ §2+4k — A >‘2+2()‘+1+b1) =

ATV (AF2) by W > A+ 1 with equality holds if and only if by = 0, where
bp=k—-X—-1.)

(4ii) For t = 2, we have that ATVA+4k W > A+ 2 if and only if A < 3k — 2 (and
k > 4). In Theorem 3.4, we will also consider the case A > 1k — 2 for
distance-regular graphs with diameter D > 4.

We combine Theorem 1.2 and Lemma 3.1, and then we obtain the following
result.

Theorem 3.3. Let T' be an edge-regular graph with parameters (v, k, ), second
largest eigenvalue r and diameter D > 4. For any positive integer t, if A < %k —t,
then r > \+t.

Proof. Since D > 4, Theorem 1.2 implies that r» > A+VAT+HE V;‘2+4k. Assume that

A< %k — ¢, then Lemma 3.1 says that AvYA°+dk V§2+4k > A+ t. Thus, we obtain that
r > A+ t. This finishes the proof. ]

We apply this result to the class of distance-regular graphs with diameter D > 4.
Then we obtaind the following result.

Theorem 3.4. Let ' be a distance-reqular graph with valency k > 2, intersection
number a; = \, second largest eigenvalue v and diameter D > 4. Thenr > A+ /2.

Proof. If k = 2, then T is an n-gon for n > 8 and r > v/2 = A 4+ /2 (as A = 0). So,
we may assume that k£ > 3.

IfA> %k — 1, then by [5, Theorem 16], we know that I' is the flag graph of
a regular generalized D-gon of order (s, s) for some s > 2, and the second largest
eigenvalue r of T satisfies r > A + v/2s > A + 2 (see, [1, Section 6.5] or [3]).

If $k —2 < XA < 3k — 1, then T satisfies either (k is even and A = $k —2) or (k
is odd and \ = %k - %) The first case implies that » > A+ 2 as @ > A+2.

And the second case implies that r > A + V3 as AEVA+dk V)z‘z“‘k > A+ /3.
If A< %k — 2, then by Theorem 3.3, we know that r > A 4+ 2. This finishes the
proof. O

Remark 3.5. (i) In Theorem 3.4, r = A 4+ v/2 holds only for the 8-gon.

(ii) The flag graph of a regular generalized 4-gon of order (2, 2) has second largest
eigenvalue r = 3 = 1+2 = A+2. And some antipodal distance-regular graphs
with diameter 4 satisfy that k is even, A\ = %k —2and r = AVATHIk V’;'Hk =242
(see, [1, p.421]).
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4. Edge-regular Graphs With Diameter 3

Recall that for an edge-regular graph I' with parameters (v, k, ) and diameter
3, if we replace as by as(z) and follow the proof of Theorem 1.1, then we obtain

that the second largest eigenvalue of T is at least min{ 22"+ g.(2)} where «

is a vertex of I and as(z) = \rgl(x)| Z az(z,y). If as(x ) > ’\Jri VAR then we

y€Els(x)

find a result similar to Lemma 3.3. But it is not true in general for edge-regular
graphs with diameter 3.

In this section, for an edge-regular graph I‘ with parameters (v, k, A), second

(A— ﬂ)2+4 k—p)

largest eigenvalue r and diameter 3, we compare with the local
valency A to find a relationship between r and A. Note that if k=2, then I is an
n-gon for n € {6,7} and r > A+ 1.

Lemma 4.1. Let T be an edge-regular graph with parameters (v, k, \), second largest

A—fit/ (A—@)?+4(k—p) _ k(k—1-X
ey %2, where = FUSER.

eigenvalue r and diameter 3. Then r >

Proof. Let = be a vertex of I'. Consider a partition P = {{z},'1(z),T2(x) UT'3(x)}
of the set of vertices of I". As there are v — k — 1 vertices in I'y(2) UT'3(x), we know

that vertices in I'y(z) UT'3(x) have averagely i = % neighbors in T'(z). Then
one can easily see that the following matrix @) is the quotient matrix corresponding

to the partition P:

>

k—1-X
k—p

o= 1

o
=

Note that the matrix @ has eigenvalues

A=+ VO—p?+ak—p) A== VA - @)’ +4k—p)

k
~ 2 2

Thus, we know that the second largest eigenvalue r of I' is at least the second
largest eigenvalue of @ (see for example [2, Corollary 2.5.4]). This finishes the
proof. o

In [6, Proposition 3.2], it was shown that for a distance-regular graph with
second largest eigenvalue r, intersection numbers a; = A\, co = p and diameter 3,
r > A+ 1 — u holds. We generalize this to the class of edge-regular graphs (with
diameter 3).

Lemma 4.2. LetT" be an edge-regular graph with parameters (v, k, \), second largest

eigenvalue r and diameter 3. Then r > XA+ 1 — i, where i = k(vk__Tl__l)‘)
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Proof. Note that » > 0 (see for example Lemma 4.1). If A — & < —2, then
A+1—p < —1<r holds. So, we may assume that A — g > —2.

Since k > A + 1, we have k — ji > A+ 1 — fi, and this implies that (A — )% +
4(k—p) > A=) +4A+1—fp) = (A+2—p)% As A +2— [ > 0, we obtain
that /(A — )2 + 4(k — i) > A+2— fi, and hence A VA “)2+4k L
holds. Thus, by Lemma 4.1, we know that r > A+1—[. ThlS finishes the proof. D

Remark 4.3. (i) Lemma 4.2 is also true for edge-regular graphs with diameter
at least 4. But we have a better bound for edge-regular graphs with diameter
at least 4. (see for example Lemma 3.3)

k(k— 1 N o k(k—1-X) _

(i) For distance-regular graphs with diameter 3, c; = > itk T B
holds. Thus, Lemma 4.2 slightly strengthens a result of [6, Proposition 3.2].

Lemma 4.4. Let T be an edge-regular graph with parameters (v, k,\) and diameter
3. Let s be an integer satisfying k > s\ + s2. If v > ()\+1+5)k gg\\ LEk+k+1,

thon EENOIEET )\ e B

v—k—1

Proof. From the assumption v>(A+1+459) kk:si:izk + k + 1, we have that

v—k—1>(A+1+45)3=k. Sincev—k—1>0and k—sA— s> > 0, we obtain

that k — s\ — s> > (A + 14 5) 22220 — (A1 4 o).

Multiply by 4 and then we obtain that 4k — 4s\ — 4s% > 4\fi + 4[i + 4s[i.

Add A?>+/i? to both sides. Then we have that A\2+[i2+4k—4s\—4s2 > N2+ a2+
ANL+AR+4si, ie, A—p)2+4(k—i) > A+ )2 +4s(A+ 1)+ (25)% = (A +[i+2s)?
holds. Since /(A — )2+ 4(k — ) > V(N + i +28)2 = A+ i+ 28] > A+ i + 2s,
we obtain that 2=#tV ()\_Qﬁ)2+4(k_ﬁ) > X\ + s. This finishes the proof. O

In the following theorem, we consider the case s = 1. And we find that the
second largest eigenvalue of an edge-regular graph with parameters (v,k, A) and
diameter 3 is larger than A + 1 when v is large compared to A\k.

Theorem 4.5. Let I' be an edge-regular graph with parameters (v,k, ), second
largest eigenvalue v and diameter 3. If v > (A+3)k + 1, then r > A+ 1.

Proof. Note that k > A+1 holds (as the diameter of I" is 3). Set s = 1 in Lemma 4.4.
L A=t/ O— )2+ 4(k—f)
Then Lemma 4.4 says that v > (A+3)k+1 implies that 5 > A1,

By Lemma 4.1, we obtain that r > ATty (A_Zﬁ)2+4(k_ﬁ) > X\ + 1. This finishes the
proof. O

We apply this result to the class of distance-regular graphs with intersection
number a; = A = 0 and diameter 3. Then we obtaind the following result.
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Theorem 4.6. Let I' be a distance-reqular graph with valency k > 2, intersection
number a; = X\ = 0, second largest eigenvalue r and diameter 3. Then r > A+ 1.

Proof. If the graph I has more than 3k + 1 vertices, then by Theorem 4.5, we know
that » > A+ 1. So, we assume that I' has at most 3k + 1 vertices. Then by [7,
Theorem 1], we know that T is either a 7-gon, a Taylor graph or a bipartite graph.
Note that a 7-gon satisfies 7 > 1 = A + 1 and that a Taylor graph with A = 0
satisfies r = 1 = A + 1. So, we may assume that I' is bipartite. Then I' satisfies
that r > Vk—co >1=X+1,and r = 1 if and only if I" is a Taylor graph. This
finishes the proof. o

Remark 4.7. In Theorem 4.6, »r = A+ 1 with A = 0 holds only for a Taylor graph,
for example, the 6-gon and the 3-cube.
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