KYUNGPOOK Math. J. 61(2021), 671-677 https://doi.org/10.5666/KMJ.2021.61.3.671 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Relationship between the Second Largest Eigenvalue and Local Valency of an Edge-regular Graph

JONGYOOK PARK

Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea

e-mail: jongyook@knu.ac.kr

ABSTRACT. For a distance-regular graph with valency k, second largest eigenvalue r and diameter D, it is known that $r \geq \min\{\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}, a_3\}$ if D = 3 and $r \geq \frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}$ if $D \geq 4$, where $\lambda = a_1$. This result can be generalized to the class of edge-regular graphs. For an edge-regular graph with parameters (v, k, λ) and diameter $D \geq 4$, we compare $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}$ with the local valency λ to find a relationship between the second largest eigenvalue and the local valency. For an edge-regular graph with diameter 3, we look at the number $\frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2}$, where $\bar{\mu} = \frac{k(k - 1 - \lambda)}{v - k - 1}$, and compare this number with the local valency λ to give a relationship between the second largest eigenvalue and the local valency. Also, we apply these relationships to distance-regular graphs.

1. Introduction

In 2010, Koolen and Park [4] gave a lower bound on the second largest eigenvalue of a distance-regular graph with diameter 3 in terms of valency k and intersection numbers a_1 and a_3 .

Theorem 1.1. (cf. [4, Lemma 6]) Let Γ be a distance-regular graph with valency k and diameter 3. Then the second largest eigenvalue r of Γ satisfies

$$r \ge \min \left\{ \frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}, a_3 \right\},$$

where $\lambda = a_1$.

Received March 31, 2021; revised July 13, 2021; accepted July 13, 2021.

2020 Mathematics Subject Classification: 05E30.

Key words and phrases: edge-regular graphs, distance-regular graphs, second largest eigenvalues, local valency.

This research was supported by Kyungpook National University Research Fund, 2019.

In 2011, Koolen, Park and Yu [6] generalized this theorem to the class of distance-regular graphs with diameter at least 4. We note that in [6, Theorem 3.1], they assumed that the valency k is at least three, but it is also true for k = 2.

Theorem 1.2. (cf. [6, Theorem 3.1]) Let Γ be a distance-regular graph with valency k, diameter $D \geq 4$. Then the second largest eigenvalue r of Γ satisfies

$$r \ge \frac{\lambda + \sqrt{\lambda^2 + 4k}}{2},$$

where $\lambda = a_1$.

The proof of Theorem 1.2 also works for edge-regular graphs with diameter $D \geq 4$. And for edge-regular graphs Γ with diameter 3, the proof of Theorem 1.1 works if we replace a_3 by $\bar{a}_3(x) = \frac{1}{|\Gamma_3(x)|} \sum_{y \in \Gamma_3(x)} a_3(x,y)$, where x is a vertex of Γ .

In this paper, we will try to give a lower bound on the second largest eigenvalue r of an edge-regular graph with parameters (v,k,λ) in terms of λ . In order to do so, we will compare $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}$ with the local valency λ for edge-regular graphs with diameter $D\geq 4$. Since a lower bound on $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}$ does not give an immediate lower bound on the second largest eigenvalue of an edge-regular graph with diameter 3, we will consider the number $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^2+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$. Once we have a relationship between r and λ for edge-regular graphs with diameter $D\geq 3$, we apply it to the class of distance-regular graphs with diameter $D\geq 3$. Then we obtain that for a distance-regular graph with diameter $D\geq 4$, the second largest eigenvalue is at least $\lambda+\sqrt{2}$. For a distance-regular graph with diameter 3, we can show that the second largest eigenvalue is larger than $\lambda+1$ if the number v of vertices is large compared to λk .

2. Definitions and Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [1] for more information. Let Γ be a connected graph with vertex set $V(\Gamma)$. The distance $d_{\Gamma}(x,y)$ between two vertices $x,y\in V(\Gamma)$ is the length of a shortest path between x and y in Γ . The diameter $D=D(\Gamma)$ of Γ is the maximum distance between any two vertices of Γ . For each $x\in V(\Gamma)$, let $\Gamma_i(x)$ be the set of vertices of Γ at distance i from x ($0 \le i \le D$). In addition, define $\Gamma_{-1}(x)=\emptyset$ and $\Gamma_{D+1}(x)=\emptyset$. For the sake of simplicity, let $\Gamma(x)=\Gamma_1(x)$ and we denote $x\sim y$ if two vertices x and y are adjacent. In particular, Γ is regular with valency k if $k=|\Gamma(x)|$ holds for all $x\in V(\Gamma)$. The graph Γ is called edge-regular with parameters (v,k,λ) if it has v vertices, is regular with valency k and satisfies that any two adjacent vertices of Γ have λ commnon neighbors. Note that for any vertex x of an edge-regular graph with parameters (v,k,λ) , the subgraph induced on $\Gamma(x)$ is a regular graph with valency λ .

For a connected graph Γ with diameter D, we choose two vertices x,y at distance $i=d_{\Gamma}(x,y)$, and consider the numbers $c_i(x,y)=|\Gamma_{i-1}(x)\cap\Gamma(y)|$, $a_i(x,y)=|\Gamma_i(x)\cap\Gamma(y)|$ and $b_i(x,y)=|\Gamma_{i+1}(x)\cap\Gamma(y)|$ ($0\leq i\leq D$). We say that the intersection number c_i (a_i and b_i , respectively) exists if the number $c_i(x,y)$ ($a_i(x,y)$ and $b_i(x,y)$, respectively) does depend only on $i=d_{\Gamma}(x,y)$ not on the choice of x and y with $d_{\Gamma}(x,y)=i$. Set $c_0=b_D=0$ and observe $a_0=0$ and $c_1=1$. A connected graph Γ with diameter D is called a distance-regular graph if there exist intersection numbers c_i, a_i, b_i for all $i=0,1,\ldots,D$. Note that a distance-regular graph is edge-regular with parameters (v,b_0,a_1) .

For any connected graph Γ with diameter D, the distance-i graph Γ_i ($0 \le i \le D$) is the graph whose vertices are those of Γ and edges are the 2-subsets of vertices at mutual distance i in Γ . In particular, $\Gamma_1 = \Gamma$. An antipodal graph is a connected graph Γ with diameter D > 1 for which its distance-D graph Γ_D is a disjoint union of complete graphs. A graph Γ is called bipartite if it has no odd cycle. (If Γ is a distance-regular graph with diameter D and bipartite, then $a_1 = a_2 = \ldots = a_D = 0$.)

For a connected graph Γ with diameter D, the adjacency matrix $A = A(\Gamma)$ is the matrix whose rows and columns are indexed by $V(\Gamma)$, where the (x, y)-entry is 1 whenever $x \sim y$ and 0 otherwise. The eigenvalues of Γ are the eigenvalues of $A(\Gamma)$. For a partition $\Pi = \{P_1, P_2, \dots, P_\ell\}$ of the vertex set $V(\Gamma)$, we look at the numbers β_{ij} $(1 \leq i, j, \leq \ell)$, where vertices in P_i have averagely β_{ij} neighbors in P_j . Then the quotient matrix $Q = Q(\Pi)$ corresponding to the partition Π is the $\ell \times \ell$ matrix whose (i, j)-entry is β_{ij} . Note that the eigenvalues of the quotient matrix Q interlace the eigenvalues of Γ (see [2, Corollary 2.5.4]).

3. Edge-regular Graphs with Diameter at Least 4

Recall that the same proof of Theorem 1.2 also works for any edge-regular graph Γ with parameters (v, k, λ) and diameter $D \geq 4$, and hence the second largest eigenvalue r of Γ is at least $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}$.

In this section, for an edge-regular graph Γ with parameters (v, k, λ) , second largest eigenvalue r and diameter $D \geq 4$, we compare $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}$ with the local valency λ to find a relationship between r and λ . Note that if k = 2, then Γ is an n-gon for $n \geq 8$ and $r > \lambda + 1$.

Lemma 3.1. Let Γ be an edge-regular graph with parameters (v, k, λ) . Then for any positive integer t, $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2} > \lambda + t$ if and only if $\lambda < \frac{1}{t}k - t$.

Proof. Let t be a positive integer. Clearly, $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}>\lambda+t$ is equivalent to $\sqrt{\lambda^2+4k}>\lambda+2t$. Since $\lambda+2t>0$, we know that $\sqrt{\lambda^2+4k}>\lambda+2t$ is equivalent to $\lambda^2+4k>(\lambda+2t)^2=\lambda^2+4t\lambda+4t^2$. As $\lambda^2+4k>\lambda^2+4t\lambda+4t^2$ is equivalent to $t\lambda< k-t^2$, we conclude that $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}>\lambda+t$ if and only if $\lambda<\frac{1}{t}k-t$. This finishes the proof.

- **Remark 3.2.** (i) As $\lambda \geq 0$, the condition $\lambda < \frac{k}{t} t$ is meaningful when $k > t^2$.
 - (ii) For t=1, we have that $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}>\lambda+1$ if and only if $\lambda< k-1$. And $\lambda< k-1$ is true except when the graph is a complete graph. (It also can be obtained from an easy calculation, $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}=\frac{\lambda+\sqrt{\lambda^2+4(\lambda+1+b_1)}}{2}=\frac{\lambda+\sqrt{(\lambda+2)^2+4b_1}}{2}\geq\lambda+1$ with equality holds if and only if $b_1=0$, where $b_1=k-\lambda-1$.)
- (iii) For t=2, we have that $\frac{\lambda+\sqrt{\lambda^2+4k}}{2}>\lambda+2$ if and only if $\lambda<\frac{1}{2}k-2$ (and k>4). In Theorem 3.4, we will also consider the case $\lambda\geq\frac{1}{2}k-2$ for distance-regular graphs with diameter $D\geq 4$.

We combine Theorem 1.2 and Lemma 3.1, and then we obtain the following result

Theorem 3.3. Let Γ be an edge-regular graph with parameters (v, k, λ) , second largest eigenvalue r and diameter $D \geq 4$. For any positive integer t, if $\lambda < \frac{1}{t}k - t$, then $r > \lambda + t$.

Proof. Since $D \geq 4$, Theorem 1.2 implies that $r \geq \frac{\lambda + \sqrt{\lambda^2 + 4k}}{2}$. Assume that $\lambda < \frac{1}{t}k - t$, then Lemma 3.1 says that $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2} > \lambda + t$. Thus, we obtain that $r > \lambda + t$. This finishes the proof.

We apply this result to the class of distance-regular graphs with diameter $D \ge 4$. Then we obtain the following result.

Theorem 3.4. Let Γ be a distance-regular graph with valency $k \geq 2$, intersection number $a_1 = \lambda$, second largest eigenvalue r and diameter $D \geq 4$. Then $r \geq \lambda + \sqrt{2}$.

Proof. If k=2, then Γ is an n-gon for $n\geq 8$ and $r\geq \sqrt{2}=\lambda+\sqrt{2}$ (as $\lambda=0$). So, we may assume that $k\geq 3$.

If $\lambda \geq \frac{1}{2}k-1$, then by [5, Theorem 16], we know that Γ is the flag graph of a regular generalized D-gon of order (s,s) for some $s\geq 2$, and the second largest eigenvalue r of Γ satisfies $r\geq \lambda+\sqrt{2s}\geq \lambda+2$ (see, [1, Section 6.5] or [3]).

If $\frac{1}{2}k - 2 \le \lambda < \frac{1}{2}k - 1$, then Γ satisfies either $(k \text{ is even and } \lambda = \frac{1}{2}k - 2)$ or $(k \text{ is odd and } \lambda = \frac{1}{2}k - \frac{3}{2})$. The first case implies that $r \ge \lambda + 2$ as $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2} \ge \lambda + 2$. And the second case implies that $r > \lambda + \sqrt{3}$ as $\frac{\lambda + \sqrt{\lambda^2 + 4k}}{2} > \lambda + \sqrt{3}$.

If $\lambda < \frac{1}{2}k - 2$, then by Theorem 3.3, we know that $r > \lambda + 2$. This finishes the proof.

- **Remark 3.5.** (i) In Theorem 3.4, $r = \lambda + \sqrt{2}$ holds only for the 8-gon.
 - (ii) The flag graph of a regular generalized 4-gon of order (2,2) has second largest eigenvalue $r=3=1+2=\lambda+2$. And some antipodal distance-regular graphs with diameter 4 satisfy that k is even, $\lambda=\frac{1}{2}k-2$ and $r=\frac{\lambda+\sqrt{\lambda^2+4k}}{2}=\lambda+2$ (see, [1, p.421]).

4. Edge-regular Graphs With Diameter 3

Recall that for an edge-regular graph Γ with parameters (v,k,λ) and diameter 3, if we replace a_3 by $\bar{a}_3(x)$ and follow the proof of Theorem 1.1, then we obtain that the second largest eigenvalue of Γ is at least $\min\{\frac{\lambda+\sqrt{\lambda^2+4k}}{2},\bar{a}_3(x)\}$, where x is a vertex of Γ and $\bar{a}_3(x)=\frac{1}{|\Gamma_3(x)|}\sum_{y\in\Gamma_3(x)}a_3(x,y)$. If $\bar{a}_3(x)\geq\frac{\lambda+\sqrt{\lambda^2+4k}}{2}$, then we

find a result similar to Lemma 3.3. But it is not true in general for edge-regular graphs with diameter 3.

In this section, for an edge-regular graph Γ with parameters (v,k,λ) , second largest eigenvalue r and diameter 3, we compare $\frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2}$ with the local valency λ to find a relationship between r and λ . Note that if k = 2, then Γ is an n-gon for $n \in \{6,7\}$ and $r \geq \lambda + 1$.

Lemma 4.1. Let Γ be an edge-regular graph with parameters (v, k, λ) , second largest eigenvalue r and diameter 3. Then $r \geq \frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2}$, where $\bar{\mu} = \frac{k(k - 1 - \lambda)}{v - k - 1}$.

Proof. Let x be a vertex of Γ . Consider a partition $P = \{\{x\}, \Gamma_1(x), \Gamma_2(x) \cup \Gamma_3(x)\}$ of the set of vertices of Γ . As there are v - k - 1 vertices in $\Gamma_2(x) \cup \Gamma_3(x)$, we know that vertices in $\Gamma_2(x) \cup \Gamma_3(x)$ have averagely $\bar{\mu} = \frac{k(k-1-\lambda)}{v-k-1}$ neighbors in $\Gamma(x)$. Then one can easily see that the following matrix Q is the quotient matrix corresponding to the partition P:

$$Q = \left(\begin{array}{ccc} 0 & k & 0 \\ 1 & \lambda & k - 1 - \lambda \\ 0 & \bar{\mu} & k - \bar{\mu} \end{array}\right).$$

Note that the matrix Q has eigenvalues

$$k>\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^2+4(k-\bar{\mu})}}{2}>\frac{\lambda-\bar{\mu}-\sqrt{(\lambda-\bar{\mu})^2+4(k-\bar{\mu})}}{2}.$$

Thus, we know that the second largest eigenvalue r of Γ is at least the second largest eigenvalue of Q (see for example [2, Corollary 2.5.4]). This finishes the proof.

In [6, Proposition 3.2], it was shown that for a distance-regular graph with second largest eigenvalue r, intersection numbers $a_1 = \lambda$, $c_2 = \mu$ and diameter 3, $r > \lambda + 1 - \mu$ holds. We generalize this to the class of edge-regular graphs (with diameter 3).

Lemma 4.2. Let Γ be an edge-regular graph with parameters (v, k, λ) , second largest eigenvalue r and diameter 3. Then $r > \lambda + 1 - \bar{\mu}$, where $\bar{\mu} = \frac{k(k-1-\lambda)}{v-k-1}$.

Proof. Note that r > 0 (see for example Lemma 4.1). If $\lambda - \bar{\mu} < -2$, then $\lambda + 1 - \bar{\mu} < -1 < r$ holds. So, we may assume that $\lambda - \bar{\mu} \geq -2$.

Since $k > \lambda + 1$, we have $k - \bar{\mu} > \lambda + 1 - \bar{\mu}$, and this implies that $(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu}) > (\lambda - \bar{\mu})^2 + 4(\lambda + 1 - \bar{\mu}) = (\lambda + 2 - \bar{\mu})^2$. As $\lambda + 2 - \bar{\mu} \ge 0$, we obtain that $\sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})} > \lambda + 2 - \bar{\mu}$, and hence $\frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2} > \lambda + 1 - \bar{\mu}$ holds. Thus, by Lemma 4.1, we know that $r > \lambda + 1 - \bar{\mu}$. This finishes the proof. \Box

- **Remark 4.3.** (i) Lemma 4.2 is also true for edge-regular graphs with diameter at least 4. But we have a better bound for edge-regular graphs with diameter at least 4. (see for example Lemma 3.3)
 - (ii) For distance-regular graphs with diameter 3, $c_2 = \frac{k(k-1-\lambda)}{k_2} > \frac{k(k-1-\lambda)}{k_2+k_3} = \bar{\mu}$ holds. Thus, Lemma 4.2 slightly strengthens a result of [6, Proposition 3.2].

Lemma 4.4. Let Γ be an edge-regular graph with parameters (v,k,λ) and diameter 3. Let s be an integer satisfying $k > s\lambda + s^2$. If $v > (\lambda + 1 + s) \frac{k - \lambda - 1}{k - s\lambda - s^2} k + k + 1$, then $\frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2} > \lambda + s$, where $\bar{\mu} = \frac{k(k - 1 - \lambda)}{v - k - 1}$.

Proof. From the assumption $v > (\lambda + 1 + s) \frac{k - \lambda - 1}{k - s \lambda - s^2} k + k + 1$, we have that $v - k - 1 > (\lambda + 1 + s) \frac{k - \lambda - 1}{k - s \lambda - s^2} k$. Since v - k - 1 > 0 and $k - s \lambda - s^2 > 0$, we obtain that $k - s \lambda - s^2 > (\lambda + 1 + s) \frac{k(k - \lambda - 1)}{v - k - 1} = (\lambda + 1 + s) \bar{\mu}$.

that $k-s\lambda-s^2>(\lambda+1+s)\frac{k(k-\lambda-1)}{v-k-1}=(\lambda+1+s)\bar{\mu}$. Multiply by 4 and then we obtain that $4k-4s\lambda-4s^2>4\lambda\bar{\mu}+4\bar{\mu}+4s\bar{\mu}$. Add $\lambda^2+\bar{\mu}^2$ to both sides. Then we have that $\lambda^2+\bar{\mu}^2+4k-4s\lambda-4s^2>\lambda^2+\bar{\mu}^2+4k-4s\bar{\mu}$, i.e., $(\lambda-\bar{\mu})^2+4(k-\bar{\mu})>(\lambda+\bar{\mu})^2+4s(\lambda+\bar{\mu})+(2s)^2=(\lambda+\bar{\mu}+2s)^2$ holds. Since $\sqrt{(\lambda-\bar{\mu})^2+4(k-\bar{\mu})}>\sqrt{(\lambda+\bar{\mu}+2s)^2}=|\lambda+\bar{\mu}+2s|\geq\lambda+\bar{\mu}+2s$, we obtain that $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^2+4(k-\bar{\mu})}}{2}>\lambda+s$. This finishes the proof.

In the following theorem, we consider the case s=1. And we find that the second largest eigenvalue of an edge-regular graph with parameters (v,k,λ) and diameter 3 is larger than $\lambda+1$ when v is large compared to λk .

Theorem 4.5. Let Γ be an edge-regular graph with parameters (v, k, λ) , second largest eigenvalue r and diameter 3. If $v > (\lambda + 3)k + 1$, then $r > \lambda + 1$.

Proof. Note that $k > \lambda + 1$ holds (as the diameter of Γ is 3). Set s = 1 in Lemma 4.4. Then Lemma 4.4 says that $v > (\lambda + 3)k + 1$ implies that $\frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2} > \lambda + 1$. By Lemma 4.1, we obtain that $r \ge \frac{\lambda - \bar{\mu} + \sqrt{(\lambda - \bar{\mu})^2 + 4(k - \bar{\mu})}}{2} > \lambda + 1$. This finishes the proof.

We apply this result to the class of distance-regular graphs with intersection number $a_1 = \lambda = 0$ and diameter 3. Then we obtain the following result.

Theorem 4.6. Let Γ be a distance-regular graph with valency $k \geq 2$, intersection number $a_1 = \lambda = 0$, second largest eigenvalue r and diameter 3. Then $r \geq \lambda + 1$.

Proof. If the graph Γ has more than 3k+1 vertices, then by Theorem 4.5, we know that $r>\lambda+1$. So, we assume that Γ has at most 3k+1 vertices. Then by [7, Theorem 1], we know that Γ is either a 7-gon, a Taylor graph or a bipartite graph. Note that a 7-gon satisfies $r>1=\lambda+1$ and that a Taylor graph with $\lambda=0$ satisfies $r=1=\lambda+1$. So, we may assume that Γ is bipartite. Then Γ satisfies that $r\geq \sqrt{k-c_2}\geq 1=\lambda+1$, and r=1 if and only if Γ is a Taylor graph. This finishes the proof.

Remark 4.7. In Theorem 4.6, $r = \lambda + 1$ with $\lambda = 0$ holds only for a Taylor graph, for example, the 6-gon and the 3-cube.

References

- A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, 1989.
- [2] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, 2012.
- [3] E. R. van Dam and W. H. Haemers, Spectral characterizations of some distance-regular graphs, Journal of Algebraic Combinatorics, 15(2002), 189–202.
- [4] J. H. Koolen and J. Park, Shilla distance-regular graphs, European Journal of Combinatorics, 31(2010), 2064–2073.
- [5] J. H. Koolen and J. Park, Distance-regular graphs with a_1 or c_2 at least half the valency, Journal of Combinatorial Theory, Series A, 119(2012), 546–555.
- [6] J. H. Koolen, J. Park and H. Yu, An inequality involving the second largest and smallest eigenvalue of a distance-regular graph, Linear Algebra and its Applications, 434(2011), 2404–2412.
- [7] J. Park, The distance-regular graphs with valency $k \geq 2$, diameter $D \geq 3$ and $k_{D-1} + k_D \leq 2k$, Discrete Mathematics, **340**(2017), 550-561.