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Abstract. For a distance-regular graph with valency k, second largest eigenvalue r and

diameter D, it is known that r ≥ min{λ+
√

λ2+4k

2
, a3} if D = 3 and r ≥ λ+

√
λ2+4k

2
if

D ≥ 4, where λ = a1. This result can be generalized to the class of edge-regular graphs.

For an edge-regular graph with parameters (v, k, λ) and diameter D ≥ 4, we compare
λ+

√
λ2+4k

2
with the local valency λ to find a relationship between the second largest eigen-

value and the local valency. For an edge-regular graph with diameter 3, we look at the

number
λ−µ̄+

√
(λ−µ̄)2+4(k−µ̄)

2
, where µ̄ = k(k−1−λ)

v−k−1
, and compare this number with the

local valency λ to give a relationship between the second largest eigenvalue and the local

valency. Also, we apply these relationships to distance-regular graphs.

1. Introduction

In 2010, Koolen and Park [4] gave a lower bound on the second largest eigenvalue
of a distance-regular graph with diameter 3 in terms of valency k and intersection
numbers a1 and a3.

Theorem 1.1. (cf. [4, Lemma 6]) Let Γ be a distance-regular graph with valency
k and diameter 3. Then the second largest eigenvalue r of Γ satisfies

r ≥ min

{
λ+

√
λ2 + 4k

2
, a3

}
,

where λ = a1.
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In 2011, Koolen, Park and Yu [6] generalized this theorem to the class of
distance-regular graphs with diameter at least 4. We note that in [6, Theorem
3.1], they assumed that the valency k is at least three, but it is also true for k = 2.

Theorem 1.2. (cf. [6, Theorem 3.1]) Let Γ be a distance-regular graph with valency
k, diameter D ≥ 4. Then the second largest eigenvalue r of Γ satisfies

r ≥ λ+
√
λ2 + 4k

2
,

where λ = a1.

The proof of Theorem 1.2 also works for edge-regular graphs with diameter
D ≥ 4. And for edge-regular graphs Γ with diameter 3, the proof of Theorem 1.1

works if we replace a3 by ā3(x) =
1

|Γ3(x)|

∑
y∈Γ3(x)

a3(x, y), where x is a vertex of Γ.

In this paper, we will try to give a lower bound on the second largest eigenvalue
r of an edge-regular graph with parameters (v, k, λ) in terms of λ. In order to do

so, we will compare λ+
√
λ2+4k
2 with the local valency λ for edge-regular graphs with

diameter D ≥ 4. Since a lower bound on λ+
√
λ2+4k
2 does not give an immediate

lower bound on the second largest eigenvalue of an edge-regular graph with diameter

3, we will consider the number
λ−µ̄+

√
(λ−µ̄)2+4(k−µ̄)

2 , where µ̄ = k(k−1−λ)
v−k−1 . Once we

have a relationship between r and λ for edge-regular graphs with diameter D ≥ 3,
we apply it to the class of distance-regular graphs with diameter D ≥ 3. Then we
obtain that for a distance-regular graph with diameter D ≥ 4, the second largest
eigenvalue is at least λ +

√
2. For a distance-regular graph with diameter 3, we

can show that the second largest eigenvalue is larger than λ+ 1 if the number v of
vertices is large compared to λk.

2. Definitions and Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The
reader is referred to [1] for more information. Let Γ be a connected graph with
vertex set V (Γ). The distance dΓ(x, y) between two vertices x, y ∈ V (Γ) is the
length of a shortest path between x and y in Γ. The diameter D = D(Γ) of Γ is
the maximum distance between any two vertices of Γ. For each x ∈ V (Γ), let Γi(x)
be the set of vertices of Γ at distance i from x (0 ≤ i ≤ D). In addition, define
Γ−1(x) = ∅ and ΓD+1(x) = ∅. For the sake of simplicity, let Γ(x) = Γ1(x) and we
denote x ∼ y if two vertices x and y are adjacent. In particular, Γ is regular with
valency k if k = |Γ(x)| holds for all x ∈ V (Γ). The graph Γ is called edge-regular
with parameters (v, k, λ) if it has v vertices, is regular with valency k and satisfies
that any two adjacent vertices of Γ have λ commnon neighbors. Note that for any
vertex x of an edge-regular graph with parameters (v, k, λ), the subgraph induced
on Γ(x) is a regular graph with valency λ.
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For a connected graph Γ with diameterD, we choose two vertices x, y at distance
i = dΓ(x, y), and consider the numbers ci(x, y) = |Γi−1(x) ∩ Γ(y)|, ai(x, y) =
|Γi(x) ∩ Γ(y)| and bi(x, y) = |Γi+1(x) ∩ Γ(y)| (0 ≤ i ≤ D). We say that the
intersection number ci (ai and bi, respectively) exists if the number ci(x, y) (ai(x, y)
and bi(x, y), respectively) does depend only on i = dΓ(x, y) not on the choice of
x and y with dΓ(x, y) = i. Set c0 = bD = 0 and observe a0 = 0 and c1 = 1. A
connected graph Γ with diameter D is called a distance-regular graph if there exist
intersection numbers ci, ai, bi for all i = 0, 1, . . . , D. Note that a distance-regular
graph is edge-regular with parameters (v, b0, a1).

For any connected graph Γ with diameterD, the distance-i graph Γi (0 ≤ i ≤ D)
is the graph whose vertices are those of Γ and edges are the 2-subsets of vertices at
mutual distance i in Γ. In particular, Γ1 = Γ. An antipodal graph is a connected
graph Γ with diameter D > 1 for which its distance-D graph ΓD is a disjoint union
of complete graphs. A graph Γ is called bipartite if it has no odd cycle. (If Γ is a
distance-regular graph with diameter D and bipartite, then a1 = a2 = . . . = aD =
0.)

For a connected graph Γ with diameter D, the adjacency matrix A = A(Γ) is
the matrix whose rows and columns are indexed by V (Γ), where the (x, y)-entry
is 1 whenever x ∼ y and 0 otherwise. The eigenvalues of Γ are the eigenvalues of
A(Γ). For a partition Π = {P1, P2, . . . , Pℓ} of the vertex set V (Γ), we look at the
numbers βij (1 ≤ i, j,≤ ℓ), where vertices in Pi have averagely βij neighbors in Pj .
Then the quotient matrix Q = Q(Π) corresponding to the partition Π is the ℓ × ℓ
matrix whose (i, j)-entry is βij . Note that the eigenvalues of the quotient matrix Q
interlace the eigenvalues of Γ (see [2, Corollary 2.5.4]).

3. Edge-regular Graphs with Diameter at Least 4

Recall that the same proof of Theorem 1.2 also works for any edge-regular graph
Γ with parameters (v, k, λ) and diameter D ≥ 4, and hence the second largest

eigenvalue r of Γ is at least λ+
√
λ2+4k
2 .

In this section, for an edge-regular graph Γ with parameters (v, k, λ), second

largest eigenvalue r and diameter D ≥ 4, we compare λ+
√
λ2+4k
2 with the local

valency λ to find a relationship between r and λ. Note that if k = 2, then Γ is an
n-gon for n ≥ 8 and r > λ+ 1.

Lemma 3.1. Let Γ be an edge-regular graph with parameters (v, k, λ). Then for

any positive integer t, λ+
√
λ2+4k
2 > λ+ t if and only if λ < 1

t k − t.

Proof. Let t be a positive integer. Clearly, λ+
√
λ2+4k
2 > λ + t is equivalent to√

λ2 + 4k > λ+2t. Since λ+2t > 0, we know that
√
λ2 + 4k > λ+2t is equivalent

to λ2 + 4k > (λ+ 2t)2 = λ2 + 4tλ+ 4t2. As λ2 + 4k > λ2 + 4tλ+ 4t2 is equivalent

to tλ < k − t2, we conclude that λ+
√
λ2+4k
2 > λ+ t if and only if λ < 1

t k − t. This
finishes the proof. 2
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Remark 3.2. (i) As λ ≥ 0, the condition λ < k
t − t is meaningful when k > t2.

(ii) For t = 1, we have that λ+
√
λ2+4k
2 > λ + 1 if and only if λ < k − 1. And

λ < k − 1 is true except when the graph is a complete graph. (It also

can be obtained from an easy calculation, λ+
√
λ2+4k
2 =

λ+
√

λ2+4(λ+1+b1)

2 =
λ+

√
(λ+2)2+4b1

2 ≥ λ + 1 with equality holds if and only if b1 = 0, where
b1 = k − λ− 1.)

(iii) For t = 2, we have that λ+
√
λ2+4k
2 > λ + 2 if and only if λ < 1

2k − 2 (and
k > 4). In Theorem 3.4, we will also consider the case λ ≥ 1

2k − 2 for
distance-regular graphs with diameter D ≥ 4.

We combine Theorem 1.2 and Lemma 3.1, and then we obtain the following
result.

Theorem 3.3. Let Γ be an edge-regular graph with parameters (v, k, λ), second
largest eigenvalue r and diameter D ≥ 4. For any positive integer t, if λ < 1

t k − t,
then r > λ+ t.

Proof. Since D ≥ 4, Theorem 1.2 implies that r ≥ λ+
√
λ2+4k
2 . Assume that

λ < 1
t k − t, then Lemma 3.1 says that λ+

√
λ2+4k
2 > λ + t. Thus, we obtain that

r > λ+ t. This finishes the proof. 2

We apply this result to the class of distance-regular graphs with diameterD ≥ 4.
Then we obtaind the following result.

Theorem 3.4. Let Γ be a distance-regular graph with valency k ≥ 2, intersection
number a1 = λ, second largest eigenvalue r and diameter D ≥ 4. Then r ≥ λ+

√
2.

Proof. If k = 2, then Γ is an n-gon for n ≥ 8 and r ≥
√
2 = λ+

√
2 (as λ = 0). So,

we may assume that k ≥ 3.
If λ ≥ 1

2k − 1, then by [5, Theorem 16], we know that Γ is the flag graph of
a regular generalized D-gon of order (s, s) for some s ≥ 2, and the second largest
eigenvalue r of Γ satisfies r ≥ λ+

√
2s ≥ λ+ 2 (see, [1, Section 6.5] or [3]).

If 1
2k − 2 ≤ λ < 1

2k − 1, then Γ satisfies either (k is even and λ = 1
2k − 2) or (k

is odd and λ = 1
2k−

3
2 ). The first case implies that r ≥ λ+2 as λ+

√
λ2+4k
2 ≥ λ+2.

And the second case implies that r > λ+
√
3 as λ+

√
λ2+4k
2 > λ+

√
3.

If λ < 1
2k − 2, then by Theorem 3.3, we know that r > λ+ 2. This finishes the

proof. 2

Remark 3.5. (i) In Theorem 3.4, r = λ+
√
2 holds only for the 8-gon.

(ii) The flag graph of a regular generalized 4-gon of order (2, 2) has second largest
eigenvalue r = 3 = 1+2 = λ+2. And some antipodal distance-regular graphs

with diameter 4 satisfy that k is even, λ = 1
2k− 2 and r = λ+

√
λ2+4k
2 = λ+2

(see, [1, p.421]).
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4. Edge-regular Graphs With Diameter 3

Recall that for an edge-regular graph Γ with parameters (v, k, λ) and diameter
3, if we replace a3 by ā3(x) and follow the proof of Theorem 1.1, then we obtain

that the second largest eigenvalue of Γ is at least min{λ+
√
λ2+4k
2 , ā3(x)}, where x

is a vertex of Γ and ā3(x) =
1

|Γ3(x)|

∑
y∈Γ3(x)

a3(x, y). If ā3(x) ≥ λ+
√
λ2+4k
2 , then we

find a result similar to Lemma 3.3. But it is not true in general for edge-regular
graphs with diameter 3.

In this section, for an edge-regular graph Γ with parameters (v, k, λ), second

largest eigenvalue r and diameter 3, we compare
λ−µ̄+

√
(λ−µ̄)2+4(k−µ̄)

2 with the local
valency λ to find a relationship between r and λ. Note that if k = 2, then Γ is an
n-gon for n ∈ {6, 7} and r ≥ λ+ 1.

Lemma 4.1. Let Γ be an edge-regular graph with parameters (v, k, λ), second largest

eigenvalue r and diameter 3. Then r ≥ λ−µ̄+
√

(λ−µ̄)2+4(k−µ̄)

2 , where µ̄ = k(k−1−λ)
v−k−1 .

Proof. Let x be a vertex of Γ. Consider a partition P = {{x},Γ1(x),Γ2(x)∪Γ3(x)}
of the set of vertices of Γ. As there are v− k− 1 vertices in Γ2(x)∪Γ3(x), we know

that vertices in Γ2(x)∪Γ3(x) have averagely µ̄ = k(k−1−λ)
v−k−1 neighbors in Γ(x). Then

one can easily see that the following matrix Q is the quotient matrix corresponding
to the partition P :

Q =

 0 k 0
1 λ k − 1− λ
0 µ̄ k − µ̄

 .

Note that the matrix Q has eigenvalues

k >
λ− µ̄+

√
(λ− µ̄)2 + 4(k − µ̄)

2
>

λ− µ̄−
√

(λ− µ̄)2 + 4(k − µ̄)

2
.

Thus, we know that the second largest eigenvalue r of Γ is at least the second
largest eigenvalue of Q (see for example [2, Corollary 2.5.4]). This finishes the
proof. 2

In [6, Proposition 3.2], it was shown that for a distance-regular graph with
second largest eigenvalue r, intersection numbers a1 = λ, c2 = µ and diameter 3,
r > λ + 1 − µ holds. We generalize this to the class of edge-regular graphs (with
diameter 3).

Lemma 4.2. Let Γ be an edge-regular graph with parameters (v, k, λ), second largest

eigenvalue r and diameter 3. Then r > λ+ 1− µ̄, where µ̄ = k(k−1−λ)
v−k−1 .
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Proof. Note that r > 0 (see for example Lemma 4.1). If λ − µ̄ < −2, then
λ+ 1− µ̄ < −1 < r holds. So, we may assume that λ− µ̄ ≥ −2.

Since k > λ + 1, we have k − µ̄ > λ + 1 − µ̄, and this implies that (λ − µ̄)2 +
4(k − µ̄) > (λ − µ̄)2 + 4(λ + 1 − µ̄) = (λ + 2 − µ̄)2. As λ + 2 − µ̄ ≥ 0, we obtain

that
√
(λ− µ̄)2 + 4(k − µ̄) > λ+2− µ̄, and hence

λ−µ̄+
√

(λ−µ̄)2+4(k−µ̄)

2 > λ+1− µ̄
holds. Thus, by Lemma 4.1, we know that r > λ+1− µ̄. This finishes the proof. 2

Remark 4.3. (i) Lemma 4.2 is also true for edge-regular graphs with diameter
at least 4. But we have a better bound for edge-regular graphs with diameter
at least 4. (see for example Lemma 3.3)

(ii) For distance-regular graphs with diameter 3, c2 = k(k−1−λ)
k2

> k(k−1−λ)
k2+k3

= µ̄
holds. Thus, Lemma 4.2 slightly strengthens a result of [6, Proposition 3.2].

Lemma 4.4. Let Γ be an edge-regular graph with parameters (v, k, λ) and diameter
3. Let s be an integer satisfying k > sλ + s2. If v > (λ + 1 + s) k−λ−1

k−sλ−s2 k + k + 1,

then
λ−µ̄+

√
(λ−µ̄)2+4(k−µ̄)

2 > λ+ s, where µ̄ = k(k−1−λ)
v−k−1 .

Proof. From the assumption v > (λ + 1 + s) k−λ−1
k−sλ−s2 k + k + 1, we have that

v− k− 1 > (λ+1+ s) k−λ−1
k−sλ−s2 k. Since v− k− 1 > 0 and k− sλ− s2 > 0, we obtain

that k − sλ− s2 > (λ+ 1 + s)k(k−λ−1)
v−k−1 = (λ+ 1 + s)µ̄.

Multiply by 4 and then we obtain that 4k − 4sλ− 4s2 > 4λµ̄+ 4µ̄+ 4sµ̄.
Add λ2+µ̄2 to both sides. Then we have that λ2+µ̄2+4k−4sλ−4s2 > λ2+µ̄2+

4λµ̄+4µ̄+4sµ̄, i.e., (λ− µ̄)2+4(k− µ̄) > (λ+ µ̄)2+4s(λ+ µ̄)+(2s)2 = (λ+ µ̄+2s)2

holds. Since
√
(λ− µ̄)2 + 4(k − µ̄) >

√
(λ+ µ̄+ 2s)2 = |λ+ µ̄+ 2s| ≥ λ+ µ̄+ 2s,

we obtain that
λ−µ̄+

√
(λ−µ̄)2+4(k−µ̄)

2 > λ+ s. This finishes the proof. 2

In the following theorem, we consider the case s = 1. And we find that the
second largest eigenvalue of an edge-regular graph with parameters (v, k, λ) and
diameter 3 is larger than λ+ 1 when v is large compared to λk.

Theorem 4.5. Let Γ be an edge-regular graph with parameters (v, k, λ), second
largest eigenvalue r and diameter 3. If v > (λ+ 3)k + 1, then r > λ+ 1.

Proof. Note that k > λ+1 holds (as the diameter of Γ is 3). Set s = 1 in Lemma 4.4.

Then Lemma 4.4 says that v > (λ+3)k+1 implies that
λ−µ̄+

√
(λ−µ̄)2+4(k−µ̄)

2 > λ+1.

By Lemma 4.1, we obtain that r ≥ λ−µ̄+
√

(λ−µ̄)2+4(k−µ̄)

2 > λ+ 1. This finishes the
proof. 2

We apply this result to the class of distance-regular graphs with intersection
number a1 = λ = 0 and diameter 3. Then we obtaind the following result.
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Theorem 4.6. Let Γ be a distance-regular graph with valency k ≥ 2, intersection
number a1 = λ = 0, second largest eigenvalue r and diameter 3. Then r ≥ λ+ 1.

Proof. If the graph Γ has more than 3k+1 vertices, then by Theorem 4.5, we know
that r > λ + 1. So, we assume that Γ has at most 3k + 1 vertices. Then by [7,
Theorem 1], we know that Γ is either a 7-gon, a Taylor graph or a bipartite graph.
Note that a 7-gon satisfies r > 1 = λ + 1 and that a Taylor graph with λ = 0
satisfies r = 1 = λ + 1. So, we may assume that Γ is bipartite. Then Γ satisfies
that r ≥

√
k − c2 ≥ 1 = λ + 1, and r = 1 if and only if Γ is a Taylor graph. This

finishes the proof. 2

Remark 4.7. In Theorem 4.6, r = λ+1 with λ = 0 holds only for a Taylor graph,
for example, the 6-gon and the 3-cube.
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