• Title/Summary/Keyword: detector data

Search Result 1,151, Processing Time 0.06 seconds

Development of Vehicle Classification Algorithm Using Magnetometer Detector (자석검지기를 이용한 차종인식 알고리즘개발)

  • 김수희;오영태;조형기;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.111-124
    • /
    • 1999
  • The Purpose of this thesis is to develop a vehicle classification algorithm using single Magnetometer detector during presence time of vehicle detection and is to examine a held application from field test. We collected data using Magnetometer detector on freeway and used digital data to change voltage values according to magnetic flux density in analysis. We collected these datum during the presence time and then obtained characteristics from wave form in these datum. Based on these characteristics, We used the following three methods for this a1gorithm :1. Template Matching Method,2. Neural Network Method using Back-propagation Algorithm 3. Complex Method using changed slope points and mixing method 1, 2. Of course, Before processing of over three methods, These data were processed normalizing by 20, 40 of size in only X axis and moving average by 0, 3, 4, 5 of size. Vehicle classification were Processed in three steps ; 2, 3, 5 types classification. In 2 types vehicle classification, recognition rate is 83% by template matching method.

  • PDF

Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length (신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석)

  • 한종학;김성호;최병국
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2000
  • The Purpose of this study is to analyze wether the composition of training sample have a relation with the Predictive ability and the learning results of ANNs(Artificial Neural Networks) fur predicting one cycle ahead of the queue length(veh.) in a signalized intersection. In this study, ANNs\` training sample is classified into the assumption of two cases. The first is to utilize time-series(Per cycle) data of queue length which would be detected by one detector (loop or video) The second is to use time-space correlated data(such as: a upstream feed-in flow, a link travel time, a approach maximum stationary queue length, a departure volume) which would be detected by a integrative vehicle detection systems (loop detector, video detector, RFIDs) which would be installed between the upstream node(intersection) and downstream node. The major findings from this paper is In Daechi Intersection(GangNamGu, Seoul), in the case of ANNs\` training sample constructed by time-space correlated data between the upstream node(intersection) and downstream node, the pattern recognition ability of an interrupted traffic flow is better.

  • PDF

A Statistical Fitness Test of Newell's 3-detector Simplification Method for Unexpected Incident Detection in the Expressway Traffic Flow (고속도로 돌발상황 검지를 위한 삼연속검지기 단순화 해법의 통계적 적합성 검정)

  • OH, Chang-Seok;RHO, Jeong Hyun;PARK, Young Wook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.146-157
    • /
    • 2016
  • The objective of this study is to actualize a statistical model of the 3-detector simplification model, which was proposed to detect outbreak situations by Daganzo in 1997 and to verify the statistical appropriacy thereof. This study presents the calculation process of the 3-detector simplification model and realizes the process using a statistics program. Firstly, the model was applied using data on detector of the main highways on which there is no entrances or exits. Moreover, in order to statistically verify the 3-detector simplification model, accumulative traffics for 30 seconds period, which reflects the dynamic changes of traffics due to shock wave, were estimated for outbreak traffics and steady flow, and the error of acquired data was statistically compared with that of the actual accumulative traffics. As a result, the error ratio between steady and incident cumulative flows has reached its maximum after 2-3 hours from an accident. Moreover, the incident traffic flows by accidents and the stade flows are heterogeneous in terms of their dispersion and means.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.

Video Image Detector Calibration Period Decision (영상검지기 교정주기 설정방안)

  • Lee, Chung-Won;Baik, Nam-Cheol;Song, Young-Hwa;Jang, Jin-Hwn
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.177-185
    • /
    • 2005
  • The accuracy of a video image detector(VID) is gradually reduced due to the various environmental and mechanical factors. But there has been no systematic research about this VID accuracy decreasing. To maintain a proper level of VID accuracy for the advanced traffic management. a regular VID calibration process needs to be introduced. Because of its cost, however. the calibration cannot be performed frequently. Therefore, the method to decide the optimal calibration interval should be studied in details. This study presents two different calibration interval decision methods. Using the invented data collection equipment. some data in the field were collected and analyzed. which were used for the adaptability checking. Although the data were limited. the result is pretty promising. More data needs to be investigated later and this study will help to maintain the data quality of the ITS center.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

A Suggestion for Counting Efficiency Management of the Automation Instrument (자동화장비 계측효율 관리적 측정방법 제안)

  • Park, Jun Mo;Kim, Han Chul;Choi, Seung Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • Purpose Quality control of instrument takes up a large part in the Radioimmunoassays. The gamma-ray instrument, which is one of the important instruments in the laboratory, observes the condition and performance of instrument and performs quality control of the instrument by measuring the Normalization, Calibration, Background and etc. However, there are some automation instruments which can't measure the counting efficiency of gamma-ray meters, resulting in insufficient management in terms of performance evaluation of gamma-ray meters. Therefore, the purpose of this paper is to manage the quality control continuously and regularly by suggesting how to measure the counting efficiency of gamma-ray instruments. Materials and Methods In case of a comparative measurement method to a gamma-ray instrument dedicated to nuclear medical examination, the CPM and counting efficiency can be obtained after the measurement of normalization by inserting the I-125 $200{\mu}L$(CPM 50,000~500,000) into the test tube. With this CPM and counting efficiency values, it's possible to calculate the measurement of the DPM value and count the CPM from the automation instrument from the same source, and enter the DPM to calculate the counting efficiency using a comparative measurement method. Another method is to calculate the counting efficiency by estimating the half life using the radiation source information of the tracer in B test reagents of company A. Results According to the calculation formula using the DPM obtained by counting the normalization of gamma-ray meters, the detection efficiency was 75.16% for Detector 1, 76.88% for Detector 2, 77.13% for Detector 3, 75.36% for Detector 4 and 73.2% for Detector 5 respectively. Using another calculation formula estimated from the shelf life, the data of the detection efficiency from Detector 1 to Detector 5 were 74.9%, 75.1%, 76.5%, 74.9% and 73.2% respectively. Conclusion Although the accuracy of counting efficiencies of both methods are insufficient, this is considered to be useful for ongoing management of quality control if counting efficiency is managed after setting the acceptable ranges. For example, if the measurement efficiency is set to 70% or higher, the allowed %difference between measurements is within 3% and the %difference with the detector wall is set within 5%.

Fuzzy-ARTMAP based Multi-User Detection

  • Lee, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.172-178
    • /
    • 2012
  • This paper studies the application of a fuzzy-ARTMAP (FAM) neural network to multi-user detector (MUD) for direct sequence (DS)-code division multiple access (CDMA) system. This method shows new solution for solving the problems, such as complexity and long training, which is found when implementing the previously developed neural-basis MUDs. The proposed FAM based MUD is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capabilities of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of FAM based MUD is compared with other neural net based MUDs in terms of the bit error rate.

Playback Signal Processing in a Digital High Density Magnetic Recording System (디지털 고밀도 자기기록 장치의 재생신호 처리에 관한 연구)

  • 이상록;박시우;박선기;박진우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.31-39
    • /
    • 1993
  • In the playback signal processing of a digital magnetic recording system, the major signal processing processes consist of pulse equalization. pulse detection, clock recovery, and data recovery. Equalizer which compensates interference occurrde between pulses recorded in high density on a magnetic media is realized by pulse slimming method, and pulse detection by a integrating detector. Clock recovery from the detector output was accomplished by using PLL. and data recovery to reduce noise effects was carried out by utilizing the three sampling clocks recovered in clock recovery process. In this paper these processes are implemented in hardware and its performance is evaluated by experimenting with a commercial DAT. It was found that the playback signal processor proposed is suitable to the practical high density magnetic recording system.

  • PDF

Implementation of Multiple Frequency Bioelectrical Impedance Analysis System for Body Composition Analysis (신체 성분 분석을 위한 다 주파수 생체전기 임피던스 분석 시스템 구현)

  • Kim, Seong-Cheol;Jo, Byung-Nam;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.331-333
    • /
    • 2004
  • In this study, we implement the multiple frequency bioelectrical impedance analysis system for body composition analysis. Overall system consists of : 1) conductivity electrodes to contact with hands and foots, 2) multiple frequency alternating current signal generator for generating 5, 50, 250kHz frequency and 800uA contained alternating current signal, 3) voltage signal detector, 4) phase signal detector, 5) key-pad to input individual information, 6) micro controller for data processing, 7) LCD for processed data to display, 8) system power, We explain the architecture of the system and required theory to implement the system. Finally, experimental results are illustrated to show the performance of the system.

  • PDF