• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.034 seconds

Performance Improvement of 16 QAM Signal in PCN Channel

  • Kim, Eon-Gon;Oh, Chang-Heon;Cho, Sung-Joon
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.10-16
    • /
    • 1996
  • In this paper, we have analyzed the error performance of the optimum threshold detection(OTD) of 16 QAM signal in the Rician fading channel with and without the maximal ratio combining(MRC) diversity technique in the presence of cochannel Rayleigh interference. An also the error performance of OTD is compared to that of conventional threshold detection(CTD) in the Rician fading channel in the presence of cochannel Rayleigh interference. With the result of analysis, it is found that there exists a synergistic effect due to both MRC diversity and optimum threshold detection in the Rician fading channel in the presence of cochannel Rayleigh interference.

  • PDF

Template Based Object Detection & Tracking by Chamfer Matching in Real Time Video (Chamfer Matching을 이용한 실시간 템플릿 기반 개체 검출 및 추적)

  • Islam, Md. Zahidul;Setiawan, Nurul Arif;Kim, Hyung-Kwan;Lee, Chil-Woo
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.92-94
    • /
    • 2008
  • In this paper we describe an approach for template based detection and tracking of objects by chamfer matching in real time video. Detecting and tracking of any objects is the key problem in computer vision. In our case we try for hand and head of human for detection and tracking by chamfer matching technique. Matching involves correlating the templates with the distance transformed scene and determining the locations where the mismatch is below a certain user defined threshold.

Enhanced deep soft interference cancellation for multiuser symbol detection

  • Jihyung Kim;Junghyun Kim;Moon-Sik Lee
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.929-938
    • /
    • 2023
  • The detection of all the symbols transmitted simultaneously in multiuser systems using limited wireless resources is challenging. Traditional model-based methods show high performance with perfect channel state information (CSI); however, severe performance degradation will occur if perfect CSI cannot be acquired. In contrast, data-driven methods perform slightly worse than model-based methods in terms of symbol error ratio performance in perfect CSI states; however, they are also able to overcome extreme performance degradation in imperfect CSI states. This study proposes a novel deep learning-based method by improving a state-of-the-art data-driven technique called deep soft interference cancellation (DSIC). The enhanced DSIC (EDSIC) method detects multiuser symbols in a fully sequential manner and uses an efficient neural network structure to ensure high performance. Additionally, error-propagation mitigation techniques are used to ensure robustness against channel uncertainty. The EDSIC guarantees a performance that is very close to the optimal performance of the existing model-based methods in perfect CSI environments and the best performance in imperfect CSI environments.

A Study proposal for URL anomaly detection model based on classification algorithm (분류 알고리즘 기반 URL 이상 탐지 모델 연구 제안)

  • Hyeon Wuu Kim;Hong-Ki Kim;DongHwi Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.101-106
    • /
    • 2023
  • Recently, cyberattacks are increasing in social engineering attacks using intelligent and continuous phishing sites and hacking techniques using malicious code. As personal security becomes important, there is a need for a method and a solution for determining whether a malicious URL exists using a web application. In this paper, we would like to find out each feature and limitation by comparing highly accurate techniques for detecting malicious URLs. Compared to classification algorithm models using features such as web flat panel DB and based URL detection sites, we propose an efficient URL anomaly detection technique.

Anomaly Sewing Pattern Detection for AIoT System using Deep Learning and Decision Tree

  • Nguyen Quoc Toan;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has recently gained popularity. Deep neural networks (DNNs) have achieved great success in many applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-based system for smart sewing automation using edge devices. Our technique included developing a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for our defective sewing stitches detection model, to detect anomalies and classify the sewing patterns. According to the experimental testing, the proposed approach achieved a perfect score with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0, and a speed of 0.07 seconds with file size 2.43MB.

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.

Experimental damage identification of cantilever beam using double stage extended improved particle swarm optimization

  • Thakurdas Goswami;Partha Bhattacharya
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.591-606
    • /
    • 2024
  • This article proposes a new methodology for identifying beam damage based on changes in modal parameters using the Double Stage Extended Improved Particle Swarm Optimization (DSEIPSO) technique. A finite element code is first developed in MATLAB to model an ideal beam structure based on classical beam theory. An experimental study is then performed on a laboratory-scale beam, and the modal parameters are extracted. An improved version of the PSO algorithm is employed to update the finite element model based on the experimental measurements, representing the real structure and forming the baseline model for all further damage detection. Subsequently, structural damages are introduced in the experimental beam. The DSEIPSO algorithm is then utilized to optimize the objective function, formulated using the obtained mode shapes and the natural frequencies from the damaged and undamaged beams to identify the exact location and extent of the damage. Experimentally obtained resultsfrom a simple cantilever beam are used to validate the effectiveness of the proposed method. The illustrated results show the effectiveness of the proposed method for structural damage detection in the SHM field.

Advances in the Early Detection of Lung Cancer using Analysis of Volatile Organic Compounds: From Imaging to Sensors

  • Li, Wang;Liu, Hong-Ying;Jia, Zi-Ru;Qiao, Pan-Pan;Pi, Xi-Tian;Chen, Jun;Deng, Lin-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4377-4384
    • /
    • 2014
  • According to the World Health Organization (WHO), 1.37 million people died of lung cancer all around the world in 2008, occupying the first place in all cancer-related deaths. However, this number might be decreased if patients were detected earlier and treated appropriately. Unfortunately, traditional imaging techniques are not sufficiently satisfactory for early detection of lung cancer because of limitations. As one alternative, breath volatile organic compounds (VOCs) may reflect the biochemical status of the body and provide clues to some diseases including lung cancer at early stage. Early detection of lung cancer based on breath analysis is becoming more and more valued because it is non-invasive, sensitive, inexpensive and simple. In this review article, we analyze the limitations of traditional imaging techniques in the early detection of lung cancer, illustrate possible mechanisms of the production of VOCs in cancerous cells, present evidence that supports the detection of such disease using breath analysis, and summarize the advances in the study of E-noses based on gas sensitive sensors. In conclusion, the analysis of breath VOCs is a better choice for the early detection of lung cancer compared to imaging techniques. We recommend a more comprehensive technique that integrates the analysis of VOCs and non-VOCs in breath. In addition, VOCs in urine may also be a trend in research on the early detection of lung cancer.

Development and Evaluation of a Texture-Based Urban Change Detection Method Using Very High Resolution SAR Imagery (고해상도 SAR 영상을 활용한 텍스처 기반의 도심지 변화탐지 기법 개발 및 평가)

  • Kang, Ah-Reum;Byun, Young-Gi;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.255-265
    • /
    • 2015
  • Very high resolution (VHR) satellite imagery provide valuable information on urban change monitoring due to multi-temporal observation over large areas. Recently, there has been increased interest in the urban change detection technique using VHR Synthetic Aperture Radar (SAR) imaging system, because it can take images regardless of solar illumination and weather condition. In this paper, we proposed a texture-based urban change detection method using the VHR SAR texture features generated from Gray-Level Co-Occurrence Matrix (GLCM). In order to evaluate the efficiency of the proposed method, the result was compared, visually and quantitatively, with the result of Non-Coherent Change Detection (NCCD) which is widely used for the change detection of VHR SAR image. The experimental results showed the greater detection accuracy and the visually satisfactory result compared with the NCCD method. In conclusion, the proposed method has shown a great potential for the extraction of urban change information from VHR SAR imagery.

Illegal and Harmful Information Detection Technique Using Combination of Search Words (단어 조합 검색을 이용한 불법·유해정보 탐지 기법)

  • Han, Byeong Woo;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.397-404
    • /
    • 2016
  • Illegal and harmful contents on the Internet has been an issue and been increased in Korea. They are often posted on the billboard and website of small enterprise and government office. Those illegal and harmful contents can relate to crime and suspicious activity, so, we need a detection system. However, to date the detection itself has been conducted manually by a person. In this paper, we develop an automated URL detection scheme for detecting a drug trafficking by using Google. This system works by analyzing the frequently used keywords in a drug trafficking and generate a keyword dictionary to store words for future search. The suspected drug trafficking URL are automatically collected based on the keyword dictionary by using Google search engine. The suspicious URL can be detected by classifying and numbering each domain from the collection of the suspected URL. This proposed automated URL detection can be an effective solution for detecting a drug trafficking, also reducing time and effort consumed by human-based URL detection.