
 

I. INTRODUCTION 

 

Industry 4.0 refers to the integration of 

digital technology into industrial processes 

to create highly automated and connected 

factories. This is achieved through the use 

of machine learning and the Internet of 

Things. However, sending large amounts 

of data to the cloud can create challenges 

in terms of speed, bandwidth, security, and 

cost. One solution to this is edge 

computing, which allows for local tasks to 

be performed and controlled directly on 

embedded devices, rather than relying on 

the cloud. Computer vision plays a vital 

role in various industries, often utilizing 

smart cameras to carry out tasks such as 

inspecting and measuring parts or guiding 

robots [1]. These cameras are equipped 

with a built-in sensor and a small 

computer that can execute the 

manufacturer’s image library. However, 

current options available in the market 

have limited deep learning capabilities, 

making it difficult to customize using 

closed-source software or limited APIs, 

and are also costly. Several hardware 

companies are developing alternative edge 

devices as a substitute for smart cameras 

to make it possible for engineers to create 

more cost-effective and cutting-edge 

vision solutions. Google’s Coral Edge TPU, 

for example, offers a favorable 

combination of attributes for inference 

neural networks.  
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Abstract 

Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has 

recently gained popularity. Deep neural networks (DNNs) have achieved great success in many 

applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging 

due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-

based system for smart sewing automation using edge devices. Our technique included developing 

a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for 

our defective sewing stitches detection model, to detect anomalies and classify the sewing 

patterns. According to the experimental testing, the proposed approach achieved a perfect score 

with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0, 

and a speed of 0.07 seconds with file size 2.43MB. 
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II. RELATED WORK 

 

Several research papers [3-5] have 

examined the most significant models and 

achievements in detection in the past few 

years. The success of AlexNet at the 

ImageNet Large Scale Visual Recognition 

Challenge in 2012 [6] was a game changer 

in deep learning-based detection. This 

event marked the start of the development 

of two-stage detectors, which work by 

generating proposals first and then 

classifying them as potential objects. With 

a single detection pipeline, more recent 

one-stage detectors classify each region 

of interest and label it as either an object 

or a background. In recent years, there has 

been a renewed emphasis on developing 

smaller networks for mobile applications 

with fast inference times and high 

accuracy. 

Here are some famous models for mobile 

object detectors: First, in 2018, 

MobileNetV2 + SSDLite was released as 

an improved version of the previous 

MobileNet classification net- work, along 

with a new detection framework known as 

SSDLite [7]. The inverted residual 

structure is the network’s defining feature. 

The residual connection is used as an 

expansion layer between the bottleneck 

layer to introduce nonlinearity via 

depthwise convolution. Tiny-YOLOv4 is 

then added to the Darknet framework. It 

was developed as a fast variant of YOLOv4 

[8], which was released in April 2020. 

YOLOv4 is well-known for its bag of 

freebies (BoF) and bag of specials (BoS) 

(BoS). BoF enhances the accuracy while 

maintaining the same inference time, 

whereas BoS improves accuracy whereas 

incurring a minor inference cost. 

MobileDet is a TensorFlow based 

detection model that was developed in 

April 2020 [9]. It improves the 

performance of non-GPU devices such as 

CPU, DSP, and Edge TPU. The models 

were created by using regular 

convolutions in the search space and then 

effectively placing them into the network 

as a result of neural architecture search. 

This approach resulted in a family of 

models that outperformed most existing 

solutions that could be deployed on the 

three hardware platforms mentioned 

above. Another notable model is YOLOv5 

[2], which was released in June 2020 by 

Glenn Jocher. Though it has no official 

research paper, Jocher is acknowledged as 

the creator of mosaic augmentation in the 

YOLOv4 [8]. This PyTorch-based model 

is based on YOLOv3 [10] and features 

improved augmentation and auto-learning 

bounding box anchors. The motivation 

behind using YOLOv5 is to compare its 

performance with other published models. 

Several studies have been published in 

recent years that either used the Coral 

TPU as hardware or represent the state-

of-the-art (SOTA) in terms of detection 

networks deployed on other embedded 

devices. Table 1 contains a summary of 

these studies.  

The Coral TPU was used in [11,12] to 

implement neural networks as a 

component of specific applications such as 

face mask detection. These works, 

however, either uses older detection 

networks or focus on classification, and 

none of them run the Coral TPU with 

SOTA models. In contrast, studies [13] 

[14] present broader benchmarks using a 
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variety of networks, but they do not 

deploy them on the Coral device. There is 

clearly a lack of research in applications 

for checking anomalies in the textile 

industry, specifically for defective  

sewing patterns.  

Table 1. Summary of related work 

 

III. PROPOSED METHOD 

 

3.1 YOLOv5 

The YOLO series has undergone several 

updates over the years, culminating in the 

release of YOLOv5 in 2020. This latest 

version boasts an improvement in 

accuracy and speed when compared to 

other detection methods and has strong 

real- time performance capabilities. 

Hence, YOLOv5 will be used as the 

baseline experimental model in this study 

for anomaly sewing detection. It has three 

components, including the input layer, 

backbone network, neck network, and 

output detection layer. An illustration of 

this structure can be seen in Fig. 1. 

 

3.1.1 Backbone 

The main goal of the backbone is to 

identify crucial features within the input 

image as referenced in [15]. YOLOv5 

utilizes Cross Stage Partial Networks 

(CSPNet) and Focus as its backbone to 

effectively identify important aspects of 

the input image. CSPNet addresses the 

issue of repeating network optimization 

gradient information within the backbone 

network and minimizes the gradient 

information while enhancing the learning 

ability of CNNs as referenced in [16] . The 

backbone network employs the feature 

map from the base layer and then uses a 

dense block to transmit the replicated 

feature map to the next level, thereby 

separating the feature map from the base 

layer. 

 

3.1.2 Neck 

To enhance the ability of network 

characteristic fusion, this study adopts the 

CSP2 structure. The Neck is frequently 

utilized to construct feature pyramids as 

referenced in [17], which aid models in 

achieving good object scaling 

generalization. It enables the recognition 

of the same object in various sizes and 

scales. The Neck is designed to optimize 

the characteristics of the backbone. It 

often comprises several bottom-up and 

top- down pathways. The utilization of an 

up-sampling and down- sampling block is 

the earliest form of Neck. It reprocesses 

and utilizes the feature maps extracted by 

the backbone at different stages in an 

efficient way. The Neck plays a crucial 

role in the target detection architecture, 

different from SSD (single-shot detector) 

[18] which does not involve a feature 

layer aggregation process. 

Paper Hardware Neural Network 
[11] Coral 

TPU + RPi4 
- 

[12] IPC, Xavier 
AGX, Xilinx 

Zynq 

YOLOv3, Center 
Net, 

MobilenetV2 + 
SSDLite 

[13] Coral Dev 
Board 

MobileNetV2 + 
SQLite 

[14] Drive PX2 YOLOv2-v5, 
Efficient 0-7 

[15] Jetson TX2 Efficient Lite, 
YOLOv3 

[16] Xavier AGX, 
NCS2, Coral 

TPU 

GoogleNet, 
AlexNet 

[17] Coral TPU Classification 
network 

Proposed 
method 

Coral TPU + 
Orange Pi 3 

MobileNetV2 + 
SSDLite, 

MobileDet, 
YOLOv4-v5 
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3.1.3 Head 

The Head is responsible for the final 

detection process. After anchor boxes are 

applied to features, it generates the final 

output vectors with class probabilities and 

bounding boxes as referenced in [19]. The 

Head is accountable for determining the 

location and category of the object using 

the feature maps collected from the 

backbone. There are two types of heads: 

one-stage object detectors and two-

stage object detectors. The RCNN 

(Region-based Convolutional Neural 

Network) series is the most 

representative of two-stage detectors, 

which have long been the dominant method 

in the field of object detection. The Head 

in the YOLOv5 model is similar to that of 

the Yolov3 [10] and Yolov4 [8] models, 

and it is mainly used in the final inspec- 

tion stage as referenced in [20]. After 

applying anchor boxes to the feature map, 

it generates a final output vector 

comprising class probabilities, object 

scores, and bounding boxes. 

 

Fig. 1. Structural architecture network of YOLOv5 
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3.2 Quantization 

Edge and embedded technologies often 

face limitations in terms of memory and 

computational capabilities. To minimize 

the strain on these limited resources, 

various optimization techniques for 

TensorFlow models have been employed. 

One of the commonly adopted methods, 

particularly with the Edge TPU 

Accelerator Module, is model quantization. 

Quantization is a valuable approach in AI 

modeling as it effectively lowers latency, 

power consumption, and model size while 

retaining relatively high accuracy levels. 

The deployment of DNNs to the Edge TPU 

is a multistep process (Fig. 2). Initially, a 

deep learning model is transformed into 

the tflite format. The model with float32 is 

then quantized to int8 or uint8 format  by 

[21]. Subsequently, the tflite file is 

processed by the Edge TPU compiler, 

resulting in a specialized Edge TPU tflite 

format for inference purposes. 

  

3.3 Decision Tree 

The complete decision tree algorithm is 

shown in Fig. 3. To demonstrate, the 

process of testing one pattern begins by 

placing the pattern and capturing it with a 

camera. Simultaneously, the YOLOv5n 

deep learning algorithm is run to detect 

any anomalies in the pattern, frame by 

frame. If an anomaly is detected, the 

confidence score is checked against a set 

confidence threshold of 0.90. If the 

detection confidence score is greater than 

0.90, it is added to the anomaly list. If the 

score is less than 0.90, it is added to the 

normal list. Each pattern is evaluated over 

100 frames. If the number of elements in 

the anomaly list is greater than 90 after 

100 frames, the pattern is deemed to be an 

anomaly, otherwise it is classified a norm. 

 
Fig. 3. Anomaly detection decision tree 

 

Fig. 2. Deployment of neural networks to the Edge TPU 
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3.4 Deployment Pipeline 

An AI application can be thought of as a 

sequence of tasks for processing data. 

Initially, the data must be loaded and 

prepared to meet the requirements of the 

model. In the case of detection, this 

includes loading and adjusting the size of a 

JPEG image. The next steps are making 

predictions and finalizing the output. The 

final step transforms the raw output from 

the model into a usable format, which can 

include thresholding, non-maximum sup-

pression, and coordinate transformation. 

Since this pipeline is run for each 

prediction, it is important for all the steps 

to be as efficient as possible. Often, the 

focus is mainly on optimizing the model, 

while overlooking other parts of the 

process. This section introduces a 

streamlined and optimized deployment 

solution for the detection model, which 

also allows for the use of widely-used 

high-level frameworks. 

The software architecture shown in Fig. 4 

presents a basic layered approach for a 

compact deep vision deployment. The 

section about the TPU was previously 

discussed. OpenCV [22] is commonly 

used for loading and adjusting images. It 

uses shared libraries to perform these 

tasks. Using an optimized image loader 

such as libjpeg-turbo [23] can speed up 

the entire pipeline. The same is true for 

Numpy [24], which handles mathematical 

tensor operations on the CPU. A 

specialized math library like OpenBLAS 

[25], which utilizes Single Instruction 

Multiple Data (SIMD), can perform vector 

operations more quickly and efficiently. 

This type of software stack is just as fast 

as a solution written in a compiled 

language, but it is much more flexible. 

Additionally, it would be practical to 

package the application in a lightweight 

container for easy deployment using 

virtualization technologies. 

 

 
Fig. 4. Micro software stack for fast and 

lightweight edge deployment 

 

IV. Experiments 

 

4.1 Dataset 

The dataset was collected at Hongik 

University AI Laboratory. Initially, there 

were 1200 images in the raw dataset 

labeling by bounding box, then after data 

augmentation including flip, rotate, adding 

noise, mosaic [8], color modifications, 

brightness, and contrast, the final dataset 

for training including 20000 images, 

resulting a sufficient dataset for this task. 

 

4.2 Hardware 

The models were trained on a 

computer with the configuration: CPU 

AMD Ryzen Threadripper 2950X @ 

4.40 GHz (16 threads x 32 core), 

64GB DDR4 2666MHZ for RAM, GPU 

NVIDIA GeForce GTX 2080 Ti 12GB x 

2, Linux Ubuntu 20.04.4 LTS and 

Python 3.9.12. In terms of the 

embedded board, Orange Pi 3 5(CPU: 
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Cortex-A53, RAM: 2GB DDR3, GPU: 

Mali-T720 MP2 @ 600Mhz) was used 

for the experimental process, with the 

assistance of the accelerator Google 

Coral Edge TPU 6. Fig. 5 and Fig. 6 

show Orange Pi 3 mainboard and TPU, 

respectively. 

 
Fig. 5. Orange Pi 3 mainboard 

 
Fig. 6. Accelerator Google Coral Edge TPU 

 

4.3 Evaluation Metrics 

In our experiments, F1score, False 

Positive Rate (FPR), False Negative Rate 

(FNR), and Accuracy have been applied to 

evaluate the models. Before reading these 

metrics’ formulas, it is important to 

understand the following terms: True 

Positives (TP) denote the number of 

positive samples (Anomalies) that have 

been accurately identified by the model; 

True Negatives (TN) represent the 

number of negative samples (Norms) 

correctly classified; False Positives (FP) 

is the number of positive samples 

(Anomalies) that were wrongly classified; 

False Negatives (FN) means the number 

of negative samples (Norms) that were 

incorrectly identified. 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 = 𝐹𝑁
 

𝐹𝑃𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑁𝑅 =  
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

4.4 Experimental Results 

The model has been evaluated with 20 

tested samples (each sample has 1 pattern, 

the ratio between anomaly and norm is 

50/50 or there are 10 anomalies and 10 

norms). Fig. 7 depicts the setup for testing 

at the sewing machine company where the 

testing phase was conducted. 

 

 
Fig. 7. Setup system for testing 

The confusion matrix for the performance 

of each model is illustrated in Fig. 8. 

YOLOv5n model has outperformed the 

other techniques by achieving the 

perfect evaluation metrics. The fastest 

execution speed was 0.070 ms with the 

smallest model size file 2.43 MB. Fig. 9 

displays some testing patterns for the 

anomalies at the testing venue with 

YOLOv5n based on the proposed decision 

tree.   
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Fig. 9. Results of anomaly sewing 

detection model (YOLOv5n) on test 

patterns 

 

V. Conclusion 

 

In this study, the YOLOv5n deep learning 

algorithm with the proposed decision tree 

has been successfully applied to the textile 

industry for locating anomalies and 

classifying sewing patterns. The algorithm 

was successfully quantized and run on an 

Orange Pi 3 embedded mainboard with 

ARM architecture and a Google Coral Edge 

TPU accelerator. A decision tree was 

proposed to make the final conclusion of 

anomalies, providing a sufficient scenario 

for anomaly sewing pattern detection. The 

results of comparison with other 

techniques indicated that the proposed 

algorithm achieved robustness, speed, and 

smaller file size compared to the others. 

Future research will focus on finding more 

optimized methods to further enhance the 

speed and reduce the size of the model 

while maintaining its performance. 

 

REFERENCES 

[1] M. R. Pedersen, L. Nalpantidis, R. 

S. Andersen, C. Schou, S. Bøgh, V.  

Kru¨ger, and O.  Madsen, “Robot skills for 

manufacturing: From concept to industrial 

deployment,” Robotics and Computer-

Integrated Manufacturing, vol. 37, pp. 282–
291, 2016. 

[2] G. Jocher, “YOLOv5 by Ultralytics,” 
52020. Available at 

https://github.com/ultralytics/yolov5.(acc

essed Dec., 15, 2023). 

Fig. 8. Confusion matrix of conducted models performed on 20 testing patterns 

92 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322



[3] L. Liu, W. Ouyang, X. Wang, P. 

Fieguth, J. Chen, X. Liu, et al., “Deep 

learning for generic object detection,” A 

Survey [J]., 2018. 

[4] C. B. Murthy, M. F. Hashmi, N. D. 

Bokde, and Z. W. Geem, “Investigations of 

object detection in im- ages/videos using 

various deep learning techniques and 

embedded platforms a comprehensive 

review,” Applied sciences, vol. 10, no. 9, 

pp. 3280, 2020. 

[5] X. Wu, D. Sahoo, and S. C. Hoi, 

“Recent advances in deep learning for 

object detection,” Neurocomputing, vol. 

396, pp. 39–64, 2020. 

[6] A. Krizhevsky, I. Sutskever, and G. 

E. Hinton, “Imagenet classification with 

deep convolutional neural networks,” 
Communications of the ACM, vol. 60, no. 6, 

pp. 84–90, 2017. 

[7] M. Sandler, A. Howard, M. Zhu, A. 

Zhmoginov, and L. C. Chen, “Mobilenetv2: 

Inverted residuals and linear bottlenecks,” 
in Proceedings of the IEEE conference on 
computer vision and pattern recognition, 

pp. 4510–4520, 2018. 

[8] A. Bochkovskiy, C. Y. Wang, and H. 

Y. M. Liao, “Yolov4: Optimal speed and 

accuracy of object detection,” arXiv 

preprint arXiv:2004.10934, 2020. 

[9] Y. Xiong, H. Liu, S. Gupta, B. Akin, 

G. Bender, Y. Wang, P. J. Kindermans, M. 

Tan, V. Singh, and B. Chen, “Mobiledets: 

Searching for object detection 

architectures for mobile accelerators,” in 

Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern 

Recognition, pp. 3825–3834, 2021. 

[10] J. Redmon and A. Farhadi, “Yolov3: 

An incremental improvement,” CoRR, vol. 

abs/1804.02767, 2018. 

[11] A. Ghosh, S. A. Al Mahmud, T. I. R. 

Uday, and D. M. Farid, “Assistive 

technology for visually impaired using 

tensor flow object detection in raspberry 

pi and coral usb accelerator,” in 2020 IEEE 

Region 10 Symposium (TEN- SYMP), pp. 

186–189, 2020. 

[12] M. Verucchi, G. Brilli, D. Sapienza, 

M. Verasani, M. Arena, F. Gatti, A. 

Capotondi, R. Cavicchioli, M. Bertogna, and 

M. Solieri, “A systematic assessment of 

embedded neural networks for object 

detection,” in 2020 25th IEEE International 

Conference on Emerging Technologies and 
Factory Automation (ETFA), vol. 1, pp. 

937– 944, IEEE, 2020. 

[13] D. N. N. Tran, H. H. Nguyen, L. H. 

Pham, and J. W. Jeon, “Object detection 

with deep learning on drive px2,” in 2020 

IEEE International Conference on 
Consumer Electronics- Asia (ICCE-Asia), 

pp. 1–4, IEEE, 2020. 

[14] H. H. Nguyen, D. N. N. Tran, and J. 

W. Jeon, “Towards real-time vehicle 

detection on edge devices with nvidia 

jetson tx2,” in 2020 IEEE International 

Conference on Consumer Electronics - 

Asia (ICCE-Asia), pp. 1–4, 2020. 

[15] A. Goncalves, P. Ray, B. Soper, D. 

Widemann, M. Nygard, J. F. Nygard, and A. 

P. Sales, “Bayesian multitask learning 

regression for heterogeneous patient 

cohorts,” Journal of Biomedical Informatics, 

vol. 100, pp. 100059, 2019. 

[16] X. Zhang, J. Zhou, W. Sun, and S. 

K. Jha, “A lightweight cnn based on 

transfer learning for covid-19 diagnosis,” 
Computers, Materials and Continua, pp. 

1123–1137, 2022. 

[17] W. Liu, D. Anguelov, D. Erhan, C. 

Szegedy, S. Reed, C.Y. Fu, and A. C. Berg, 

“SSD: Single shot multibox detector,” in 

European conference on computer vision, 

pp. 21–37, Springer, 2016. 

[18] H.K. Jung and G.S. Choi, 

“Improved yolov5: Efficient object 

detection using drone images under 

various conditions,” Applied Sciences, vol. 

12, no. 14, p. 7255, 2022. 

2024년 02월 스마트미디어저널 93Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322



[19] M. A. Rahaman, M. M. Ali, K. 

Ahmed, F. M. Bui, and S. H. Mahmud, 

“Performance analysis between yolov5s 

and yolov5m model to detect and count 

blood cells: deep learning approach,” in 

Proceedings of the 2nd International 
Conference on Computing Advancements, 

pp. 316–322, 2022. 

[20] B. Jiang, R. Luo, J. Mao, T. Xiao, 

and Y. Jiang, “Acquisition of localization 

confidence for accurate object detection,” 
in Proceedings of the European conference 

on computer vision (ECCV), pp. 784–799, 

2018. 

[21] “Post training quantization,” 
https://www.tensorflow.org/lite/performa

nce/post training quantization.(accessed 

Dec., 15, 2023). 

 

[22] G. Bradski, “The opencv library.,” 

Dr. Dobb’s Journal: Software Tools for the 

Professional Programmer, vol. 25, no. 11, 

pp. 120–123, 2000. 

[23] “Libjpeg-turbo github,” 07 2015. 

[24] C. R. Harris, K. J. Millman, S. J. 

Van Der Walt, R. Gom- mers, P. Virtanen, 

D. Cournapeau, E. Wieser, J. Taylor, 

S. Berg, N. J. Smith, et al., “Array 

programming with numpy,” Nature, vol. 

585, no. 7825, pp. 357–362, 2020. 

[25] Q. Wang, X. Zhang, Y. Zhang, and 

Q. Yi, “Augem: automatically generate high 

performance dense linear algebra kernels 

on x86 cpus,” in SC’13: Proceedings of the 

International Conference on High 
Performance Computing, Networking, 

Storage and Analysis, pp. 1–12, IEEE, 

2013. 

 
 

Authors 
 

  
   

Nguyen Quoc Toan 

He received B.S degree from 

Can Tho University, Vietnam 

and M.S degree from Hongik 

University, Korea. 

 

Seongwon Cho 

  

He received his B.S. degree 

from Seoul National 

University, Korea in 1982.  

He also received his MS and 

Ph.D degrees from Purdue 

University, West Lafayette, Indiana, USA in 

1987 and 1992, respectively.   He has been a 

professor of Hongik University, Seoul, Korea. 

  
  

94 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322


