

I. INTRODUCTION

Industry 4.0 refers to the integration of

digital technology into industrial processes

to create highly automated and connected

factories. This is achieved through the use

of machine learning and the Internet of

Things. However, sending large amounts

of data to the cloud can create challenges

in terms of speed, bandwidth, security, and

cost. One solution to this is edge

computing, which allows for local tasks to

be performed and controlled directly on

embedded devices, rather than relying on

the cloud. Computer vision plays a vital

role in various industries, often utilizing

smart cameras to carry out tasks such as

inspecting and measuring parts or guiding

robots [1]. These cameras are equipped

with a built-in sensor and a small

computer that can execute the

manufacturer’s image library. However,

current options available in the market

have limited deep learning capabilities,

making it difficult to customize using

closed-source software or limited APIs,

and are also costly. Several hardware

companies are developing alternative edge

devices as a substitute for smart cameras

to make it possible for engineers to create

more cost-effective and cutting-edge

vision solutions. Google’s Coral Edge TPU,

for example, offers a favorable

combination of attributes for inference

neural networks.

Anomaly Sewing Pattern Detection for AIoT System using

Deep Learning and Decision Tree

Nguyen Quoc Toan, Seongwon Cho

Abstract

Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has

recently gained popularity. Deep neural networks (DNNs) have achieved great success in many

applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging

due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-

based system for smart sewing automation using edge devices. Our technique included developing

a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for

our defective sewing stitches detection model, to detect anomalies and classify the sewing

patterns. According to the experimental testing, the proposed approach achieved a perfect score

with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0,

and a speed of 0.07 seconds with file size 2.43MB.

 Keywords : Illumination compensation | Illumination invariance | Face tracking | YCbCr | Skin locus

* This work was supported by hongik University and Ministry of SMEs and Startups

Manuscript : 2023.12.19

Revised : 2024.02.13

Confirmation of Publication: 2024.02.18

Corresponding Author : Seongwon Cho, e-mail :

swcho@hongik.ac.kr

2024년 02월 스마트미디어저널 85Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2024.13.02.85

II. RELATED WORK

Several research papers [3-5] have

examined the most significant models and

achievements in detection in the past few

years. The success of AlexNet at the

ImageNet Large Scale Visual Recognition

Challenge in 2012 [6] was a game changer

in deep learning-based detection. This

event marked the start of the development

of two-stage detectors, which work by

generating proposals first and then

classifying them as potential objects. With

a single detection pipeline, more recent

one-stage detectors classify each region

of interest and label it as either an object

or a background. In recent years, there has

been a renewed emphasis on developing

smaller networks for mobile applications

with fast inference times and high

accuracy.

Here are some famous models for mobile

object detectors: First, in 2018,

MobileNetV2 + SSDLite was released as

an improved version of the previous

MobileNet classification net- work, along

with a new detection framework known as

SSDLite [7]. The inverted residual

structure is the network’s defining feature.

The residual connection is used as an

expansion layer between the bottleneck

layer to introduce nonlinearity via

depthwise convolution. Tiny-YOLOv4 is

then added to the Darknet framework. It

was developed as a fast variant of YOLOv4

[8], which was released in April 2020.

YOLOv4 is well-known for its bag of

freebies (BoF) and bag of specials (BoS)

(BoS). BoF enhances the accuracy while

maintaining the same inference time,

whereas BoS improves accuracy whereas

incurring a minor inference cost.

MobileDet is a TensorFlow based

detection model that was developed in

April 2020 [9]. It improves the

performance of non-GPU devices such as

CPU, DSP, and Edge TPU. The models

were created by using regular

convolutions in the search space and then

effectively placing them into the network

as a result of neural architecture search.

This approach resulted in a family of

models that outperformed most existing

solutions that could be deployed on the

three hardware platforms mentioned

above. Another notable model is YOLOv5

[2], which was released in June 2020 by

Glenn Jocher. Though it has no official

research paper, Jocher is acknowledged as

the creator of mosaic augmentation in the

YOLOv4 [8]. This PyTorch-based model

is based on YOLOv3 [10] and features

improved augmentation and auto-learning

bounding box anchors. The motivation

behind using YOLOv5 is to compare its

performance with other published models.

Several studies have been published in

recent years that either used the Coral

TPU as hardware or represent the state-

of-the-art (SOTA) in terms of detection

networks deployed on other embedded

devices. Table 1 contains a summary of

these studies.

The Coral TPU was used in [11,12] to

implement neural networks as a

component of specific applications such as

face mask detection. These works,

however, either uses older detection

networks or focus on classification, and

none of them run the Coral TPU with

SOTA models. In contrast, studies [13]

[14] present broader benchmarks using a

86 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

variety of networks, but they do not

deploy them on the Coral device. There is

clearly a lack of research in applications

for checking anomalies in the textile

industry, specifically for defective

sewing patterns.

Table 1. Summary of related work

III. PROPOSED METHOD

3.1 YOLOv5

The YOLO series has undergone several

updates over the years, culminating in the

release of YOLOv5 in 2020. This latest

version boasts an improvement in

accuracy and speed when compared to

other detection methods and has strong

real- time performance capabilities.

Hence, YOLOv5 will be used as the

baseline experimental model in this study

for anomaly sewing detection. It has three

components, including the input layer,

backbone network, neck network, and

output detection layer. An illustration of

this structure can be seen in Fig. 1.

3.1.1 Backbone

The main goal of the backbone is to

identify crucial features within the input

image as referenced in [15]. YOLOv5

utilizes Cross Stage Partial Networks

(CSPNet) and Focus as its backbone to

effectively identify important aspects of

the input image. CSPNet addresses the

issue of repeating network optimization

gradient information within the backbone

network and minimizes the gradient

information while enhancing the learning

ability of CNNs as referenced in [16] . The

backbone network employs the feature

map from the base layer and then uses a

dense block to transmit the replicated

feature map to the next level, thereby

separating the feature map from the base

layer.

3.1.2 Neck

To enhance the ability of network

characteristic fusion, this study adopts the

CSP2 structure. The Neck is frequently

utilized to construct feature pyramids as

referenced in [17], which aid models in

achieving good object scaling

generalization. It enables the recognition

of the same object in various sizes and

scales. The Neck is designed to optimize

the characteristics of the backbone. It

often comprises several bottom-up and

top- down pathways. The utilization of an

up-sampling and down- sampling block is

the earliest form of Neck. It reprocesses

and utilizes the feature maps extracted by

the backbone at different stages in an

efficient way. The Neck plays a crucial

role in the target detection architecture,

different from SSD (single-shot detector)

[18] which does not involve a feature

layer aggregation process.

Paper Hardware Neural Network
[11] Coral

TPU + RPi4
-

[12] IPC, Xavier
AGX, Xilinx

Zynq

YOLOv3, Center
Net,

MobilenetV2 +
SSDLite

[13] Coral Dev
Board

MobileNetV2 +
SQLite

[14] Drive PX2 YOLOv2-v5,
Efficient 0-7

[15] Jetson TX2 Efficient Lite,
YOLOv3

[16] Xavier AGX,
NCS2, Coral

TPU

GoogleNet,
AlexNet

[17] Coral TPU Classification
network

Proposed
method

Coral TPU +
Orange Pi 3

MobileNetV2 +
SSDLite,

MobileDet,
YOLOv4-v5

2024년 02월 스마트미디어저널 87Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

3.1.3 Head

The Head is responsible for the final

detection process. After anchor boxes are

applied to features, it generates the final

output vectors with class probabilities and

bounding boxes as referenced in [19]. The

Head is accountable for determining the

location and category of the object using

the feature maps collected from the

backbone. There are two types of heads:

one-stage object detectors and two-

stage object detectors. The RCNN

(Region-based Convolutional Neural

Network) series is the most

representative of two-stage detectors,

which have long been the dominant method

in the field of object detection. The Head

in the YOLOv5 model is similar to that of

the Yolov3 [10] and Yolov4 [8] models,

and it is mainly used in the final inspec-

tion stage as referenced in [20]. After

applying anchor boxes to the feature map,

it generates a final output vector

comprising class probabilities, object

scores, and bounding boxes.

Fig. 1. Structural architecture network of YOLOv5

88 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

3.2 Quantization

Edge and embedded technologies often

face limitations in terms of memory and

computational capabilities. To minimize

the strain on these limited resources,

various optimization techniques for

TensorFlow models have been employed.

One of the commonly adopted methods,

particularly with the Edge TPU

Accelerator Module, is model quantization.

Quantization is a valuable approach in AI

modeling as it effectively lowers latency,

power consumption, and model size while

retaining relatively high accuracy levels.

The deployment of DNNs to the Edge TPU

is a multistep process (Fig. 2). Initially, a

deep learning model is transformed into

the tflite format. The model with float32 is

then quantized to int8 or uint8 format by

[21]. Subsequently, the tflite file is

processed by the Edge TPU compiler,

resulting in a specialized Edge TPU tflite

format for inference purposes.

3.3 Decision Tree

The complete decision tree algorithm is

shown in Fig. 3. To demonstrate, the

process of testing one pattern begins by

placing the pattern and capturing it with a

camera. Simultaneously, the YOLOv5n

deep learning algorithm is run to detect

any anomalies in the pattern, frame by

frame. If an anomaly is detected, the

confidence score is checked against a set

confidence threshold of 0.90. If the

detection confidence score is greater than

0.90, it is added to the anomaly list. If the

score is less than 0.90, it is added to the

normal list. Each pattern is evaluated over

100 frames. If the number of elements in

the anomaly list is greater than 90 after

100 frames, the pattern is deemed to be an

anomaly, otherwise it is classified a norm.

Fig. 3. Anomaly detection decision tree

Fig. 2. Deployment of neural networks to the Edge TPU

2024년 02월 스마트미디어저널 89Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

3.4 Deployment Pipeline

An AI application can be thought of as a

sequence of tasks for processing data.

Initially, the data must be loaded and

prepared to meet the requirements of the

model. In the case of detection, this

includes loading and adjusting the size of a

JPEG image. The next steps are making

predictions and finalizing the output. The

final step transforms the raw output from

the model into a usable format, which can

include thresholding, non-maximum sup-

pression, and coordinate transformation.

Since this pipeline is run for each

prediction, it is important for all the steps

to be as efficient as possible. Often, the

focus is mainly on optimizing the model,

while overlooking other parts of the

process. This section introduces a

streamlined and optimized deployment

solution for the detection model, which

also allows for the use of widely-used

high-level frameworks.

The software architecture shown in Fig. 4

presents a basic layered approach for a

compact deep vision deployment. The

section about the TPU was previously

discussed. OpenCV [22] is commonly

used for loading and adjusting images. It

uses shared libraries to perform these

tasks. Using an optimized image loader

such as libjpeg-turbo [23] can speed up

the entire pipeline. The same is true for

Numpy [24], which handles mathematical

tensor operations on the CPU. A

specialized math library like OpenBLAS

[25], which utilizes Single Instruction

Multiple Data (SIMD), can perform vector

operations more quickly and efficiently.

This type of software stack is just as fast

as a solution written in a compiled

language, but it is much more flexible.

Additionally, it would be practical to

package the application in a lightweight

container for easy deployment using

virtualization technologies.

Fig. 4. Micro software stack for fast and

lightweight edge deployment

IV. Experiments

4.1 Dataset

The dataset was collected at Hongik

University AI Laboratory. Initially, there

were 1200 images in the raw dataset

labeling by bounding box, then after data

augmentation including flip, rotate, adding

noise, mosaic [8], color modifications,

brightness, and contrast, the final dataset

for training including 20000 images,

resulting a sufficient dataset for this task.

4.2 Hardware

The models were trained on a

computer with the configuration: CPU

AMD Ryzen Threadripper 2950X @

4.40 GHz (16 threads x 32 core),

64GB DDR4 2666MHZ for RAM, GPU

NVIDIA GeForce GTX 2080 Ti 12GB x

2, Linux Ubuntu 20.04.4 LTS and

Python 3.9.12. In terms of the

embedded board, Orange Pi 3 5(CPU:

90 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

Cortex-A53, RAM: 2GB DDR3, GPU:

Mali-T720 MP2 @ 600Mhz) was used

for the experimental process, with the

assistance of the accelerator Google

Coral Edge TPU 6. Fig. 5 and Fig. 6

show Orange Pi 3 mainboard and TPU,

respectively.

Fig. 5. Orange Pi 3 mainboard

Fig. 6. Accelerator Google Coral Edge TPU

4.3 Evaluation Metrics

In our experiments, F1score, False

Positive Rate (FPR), False Negative Rate

(FNR), and Accuracy have been applied to

evaluate the models. Before reading these

metrics’ formulas, it is important to

understand the following terms: True

Positives (TP) denote the number of

positive samples (Anomalies) that have

been accurately identified by the model;

True Negatives (TN) represent the

number of negative samples (Norms)

correctly classified; False Positives (FP)

is the number of positive samples

(Anomalies) that were wrongly classified;

False Negatives (FN) means the number

of negative samples (Norms) that were

incorrectly identified.

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 = 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

𝐹𝑁𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃

4.4 Experimental Results

The model has been evaluated with 20

tested samples (each sample has 1 pattern,

the ratio between anomaly and norm is

50/50 or there are 10 anomalies and 10

norms). Fig. 7 depicts the setup for testing

at the sewing machine company where the

testing phase was conducted.

Fig. 7. Setup system for testing

The confusion matrix for the performance

of each model is illustrated in Fig. 8.

YOLOv5n model has outperformed the

other techniques by achieving the

perfect evaluation metrics. The fastest

execution speed was 0.070 ms with the

smallest model size file 2.43 MB. Fig. 9

displays some testing patterns for the

anomalies at the testing venue with

YOLOv5n based on the proposed decision

tree.

2024년 02월 스마트미디어저널 91Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

Fig. 9. Results of anomaly sewing

detection model (YOLOv5n) on test

patterns

V. Conclusion

In this study, the YOLOv5n deep learning

algorithm with the proposed decision tree

has been successfully applied to the textile

industry for locating anomalies and

classifying sewing patterns. The algorithm

was successfully quantized and run on an

Orange Pi 3 embedded mainboard with

ARM architecture and a Google Coral Edge

TPU accelerator. A decision tree was

proposed to make the final conclusion of

anomalies, providing a sufficient scenario

for anomaly sewing pattern detection. The

results of comparison with other

techniques indicated that the proposed

algorithm achieved robustness, speed, and

smaller file size compared to the others.

Future research will focus on finding more

optimized methods to further enhance the

speed and reduce the size of the model

while maintaining its performance.

REFERENCES

[1] M. R. Pedersen, L. Nalpantidis, R.

S. Andersen, C. Schou, S. Bøgh, V.

Kru¨ger, and O. Madsen, “Robot skills for

manufacturing: From concept to industrial

deployment,” Robotics and Computer-

Integrated Manufacturing, vol. 37, pp. 282–
291, 2016.

[2] G. Jocher, “YOLOv5 by Ultralytics,”
52020. Available at

https://github.com/ultralytics/yolov5.(acc

essed Dec., 15, 2023).

Fig. 8. Confusion matrix of conducted models performed on 20 testing patterns

92 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

[3] L. Liu, W. Ouyang, X. Wang, P.

Fieguth, J. Chen, X. Liu, et al., “Deep

learning for generic object detection,” A

Survey [J]., 2018.

[4] C. B. Murthy, M. F. Hashmi, N. D.

Bokde, and Z. W. Geem, “Investigations of

object detection in im- ages/videos using

various deep learning techniques and

embedded platforms a comprehensive

review,” Applied sciences, vol. 10, no. 9,

pp. 3280, 2020.

[5] X. Wu, D. Sahoo, and S. C. Hoi,

“Recent advances in deep learning for

object detection,” Neurocomputing, vol.

396, pp. 39–64, 2020.

[6] A. Krizhevsky, I. Sutskever, and G.

E. Hinton, “Imagenet classification with

deep convolutional neural networks,”
Communications of the ACM, vol. 60, no. 6,

pp. 84–90, 2017.

[7] M. Sandler, A. Howard, M. Zhu, A.

Zhmoginov, and L. C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,”
in Proceedings of the IEEE conference on
computer vision and pattern recognition,

pp. 4510–4520, 2018.

[8] A. Bochkovskiy, C. Y. Wang, and H.

Y. M. Liao, “Yolov4: Optimal speed and

accuracy of object detection,” arXiv

preprint arXiv:2004.10934, 2020.

[9] Y. Xiong, H. Liu, S. Gupta, B. Akin,

G. Bender, Y. Wang, P. J. Kindermans, M.

Tan, V. Singh, and B. Chen, “Mobiledets:

Searching for object detection

architectures for mobile accelerators,” in

Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern

Recognition, pp. 3825–3834, 2021.

[10] J. Redmon and A. Farhadi, “Yolov3:

An incremental improvement,” CoRR, vol.

abs/1804.02767, 2018.

[11] A. Ghosh, S. A. Al Mahmud, T. I. R.

Uday, and D. M. Farid, “Assistive

technology for visually impaired using

tensor flow object detection in raspberry

pi and coral usb accelerator,” in 2020 IEEE

Region 10 Symposium (TEN- SYMP), pp.

186–189, 2020.

[12] M. Verucchi, G. Brilli, D. Sapienza,

M. Verasani, M. Arena, F. Gatti, A.

Capotondi, R. Cavicchioli, M. Bertogna, and

M. Solieri, “A systematic assessment of

embedded neural networks for object

detection,” in 2020 25th IEEE International

Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1, pp.

937– 944, IEEE, 2020.

[13] D. N. N. Tran, H. H. Nguyen, L. H.

Pham, and J. W. Jeon, “Object detection

with deep learning on drive px2,” in 2020

IEEE International Conference on
Consumer Electronics- Asia (ICCE-Asia),

pp. 1–4, IEEE, 2020.

[14] H. H. Nguyen, D. N. N. Tran, and J.

W. Jeon, “Towards real-time vehicle

detection on edge devices with nvidia

jetson tx2,” in 2020 IEEE International

Conference on Consumer Electronics -

Asia (ICCE-Asia), pp. 1–4, 2020.

[15] A. Goncalves, P. Ray, B. Soper, D.

Widemann, M. Nygard, J. F. Nygard, and A.

P. Sales, “Bayesian multitask learning

regression for heterogeneous patient

cohorts,” Journal of Biomedical Informatics,

vol. 100, pp. 100059, 2019.

[16] X. Zhang, J. Zhou, W. Sun, and S.

K. Jha, “A lightweight cnn based on

transfer learning for covid-19 diagnosis,”
Computers, Materials and Continua, pp.

1123–1137, 2022.

[17] W. Liu, D. Anguelov, D. Erhan, C.

Szegedy, S. Reed, C.Y. Fu, and A. C. Berg,

“SSD: Single shot multibox detector,” in

European conference on computer vision,

pp. 21–37, Springer, 2016.

[18] H.K. Jung and G.S. Choi,

“Improved yolov5: Efficient object

detection using drone images under

various conditions,” Applied Sciences, vol.

12, no. 14, p. 7255, 2022.

2024년 02월 스마트미디어저널 93Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

[19] M. A. Rahaman, M. M. Ali, K.

Ahmed, F. M. Bui, and S. H. Mahmud,

“Performance analysis between yolov5s

and yolov5m model to detect and count

blood cells: deep learning approach,” in

Proceedings of the 2nd International
Conference on Computing Advancements,

pp. 316–322, 2022.

[20] B. Jiang, R. Luo, J. Mao, T. Xiao,

and Y. Jiang, “Acquisition of localization

confidence for accurate object detection,”
in Proceedings of the European conference

on computer vision (ECCV), pp. 784–799,

2018.

[21] “Post training quantization,”
https://www.tensorflow.org/lite/performa

nce/post training quantization.(accessed

Dec., 15, 2023).

[22] G. Bradski, “The opencv library.,”

Dr. Dobb’s Journal: Software Tools for the

Professional Programmer, vol. 25, no. 11,

pp. 120–123, 2000.

[23] “Libjpeg-turbo github,” 07 2015.

[24] C. R. Harris, K. J. Millman, S. J.

Van Der Walt, R. Gom- mers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor,

S. Berg, N. J. Smith, et al., “Array

programming with numpy,” Nature, vol.

585, no. 7825, pp. 357–362, 2020.

[25] Q. Wang, X. Zhang, Y. Zhang, and

Q. Yi, “Augem: automatically generate high

performance dense linear algebra kernels

on x86 cpus,” in SC’13: Proceedings of the

International Conference on High
Performance Computing, Networking,

Storage and Analysis, pp. 1–12, IEEE,

2013.

Authors

Nguyen Quoc Toan

He received B.S degree from

Can Tho University, Vietnam

and M.S degree from Hongik

University, Korea.

Seongwon Cho

He received his B.S. degree

from Seoul National

University, Korea in 1982.

He also received his MS and

Ph.D degrees from Purdue

University, West Lafayette, Indiana, USA in

1987 and 1992, respectively. He has been a

professor of Hongik University, Seoul, Korea.

94 2024년 02월 스마트미디어저널 Smart Media Journal / Vol.13, No.02 / ISSN:2287-1322

