• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.041 seconds

Extended Support Vector Machines for Object Detection and Localization

  • Feyereisl, Jan;Han, Bo-Hyung
    • The Magazine of the IEIE
    • /
    • v.39 no.2
    • /
    • pp.45-54
    • /
    • 2012
  • Object detection is a fundamental task for many high-level computer vision applications such as image retrieval, scene understanding, activity recognition, visual surveillance and many others. Although object detection is one of the most popular problems in computer vision and various algorithms have been proposed thus far, it is also notoriously difficult, mainly due to lack of proper models for object representation, that handle large variations of object structure and appearance. In this article, we review a branch of object detection algorithms based on Support Vector Machines (SVMs), a well-known max-margin technique to minimize classification error. We introduce a few variations of SVMs-Structural SVMs and Latent SVMs-and discuss their applications to object detection and localization.

  • PDF

Wavelet-Based Moving Object Segmentation Using Double Change Detection and Background Registration Technique (Double change detection과 배경 구축 기법을 이용한 웨이블릿 기반의 움직이는 객체 분할)

  • Im, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.221-222
    • /
    • 2007
  • This paper presents wavelet-based moving object segmentation using double change detection and background registration. Three successive frame differences for detection change were used in the wavelet domain. The background was constructed with the wavelet coefficients in the lowest frequency subband which are the approximated version of an image. Combining double change detection and background registration, we can obtain an efficient moving object segmentation algorithm.

  • PDF

Fast Pedestrian Detection Using Histogram of Oriented Gradients and Principal Components Analysis

  • Nguyen, Trung Quy;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, we propose a fast and accurate system for detecting pedestrians from a static image. Histogram of Oriented Gradients (HOG) is a well-known feature for pedestrian detection systems but extracting HOG is expensive due to its high dimensional vector. It will cause long processing time and large memory consumption in case of making a pedestrian detection system on high resolution image or video. In order to deal with this problem, we use Principal Components Analysis (PCA) technique to reduce the dimensionality of HOG. The output of PCA will be input for a linear SVM classifier for learning and testing. The experiment results showed that our proposed method reduces processing time but still maintains the similar detection rate. We got twenty five times faster than original HOG feature.

Detection and Isolation Method for Operator Failure by Unknown Input Observer

  • Kim, Hwan-Seong;Kim, Seung-Min
    • Journal of Navigation and Port Research
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, a fault detection method for operator failures using the observation technique is proposed. The suggested algorithm is extended using the conventional sensor/actuator fault detection method. First, it is assumed that operator failure affects human work operations, as it is an external input signal. With this assumption, a human work model with operator failure is suggested. Second, an unknown input observer with proportional and integral gains is introduced. The characteristic of this observer of estimating an external signal without an exact input is shown, and the conditions for the detection of an operator failure are proposed. Finally, by simulating the container crane operations, it is verified that the observer can accurately detect an operator failure and estimate its magnitude from the given internal signal.

DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

  • Chen, Tieming;Mao, Qingyu;Lv, Mingqi;Cheng, Hongbing;Li, Yinglong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2180-2197
    • /
    • 2019
  • With the proliferation of the Android malicious applications, malware becomes more capable of hiding or confusing its malicious intent through the use of code obfuscation, which has significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in order to effectively detect unknown malicious applications on the Android platform, we propose DroidVecDeep, an Android malware detection method using deep learning technique. First, we extract various features and rank them using Mean Decrease Impurity. Second, we transform the features into compact vectors based on word2vec. Finally, we train the classifier based on deep learning model. A comprehensive experimental study on a real sample collection was performed to compare various malware detection approaches. Experimental results demonstrate that the proposed method outperforms other Android malware detection techniques.

A Study on Edge Detection Algorithm using Modified Directional Masks (변형된 방향성 마스크를 이용한 에지검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.244-246
    • /
    • 2014
  • Edge detection is a technique that obtains the particular information of the image using the brightness variation of pixel values and utilized for preprocessing in various image processing sectors. The conventional edge detection methods such as Sobel, Prewitt and Roberts are processed by applying the same weighted value to the entire pixels regardless of pixel distribution and provides somewhat insufficient edge detection results. Therefore, this paper has proposed an edge detection algorithm considering the direction and size of pixels by applying a modified directional mask.

  • PDF

Evaluations of AI-based malicious PowerShell detection with feature optimizations

  • Song, Jihyeon;Kim, Jungtae;Choi, Sunoh;Kim, Jonghyun;Kim, Ikkyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.549-560
    • /
    • 2021
  • Cyberattacks are often difficult to identify with traditional signature-based detection, because attackers continually find ways to bypass the detection methods. Therefore, researchers have introduced artificial intelligence (AI) technology for cybersecurity analysis to detect malicious PowerShell scripts. In this paper, we propose a feature optimization technique for AI-based approaches to enhance the accuracy of malicious PowerShell script detection. We statically analyze the PowerShell script and preprocess it with a method based on the tokens and abstract syntax tree (AST) for feature selection. Here, tokens and AST represent the vocabulary and structure of the PowerShell script, respectively. Performance evaluations with optimized features yield detection rates of 98% in both machine learning (ML) and deep learning (DL) experiments. Among them, the ML model with the 3-gram of selected five tokens and the DL model with experiments based on the AST 3-gram deliver the best performance.

Improved Piracy Site Detection Technique using Search Engine

  • Kim, Eui-Jin;Kim, Deuk-Hun;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2459-2472
    • /
    • 2022
  • With the increase in copyright content exports to overseas markets due to the recent globalization of the Korean culture, the added value of the Korean digital content market is increasing at a significant rate. As such, as the size of the copyright market increases, different piracy sites have emerged that generate profits by illegally distributing works without the permission of the copyright holders, resulting in direct and indirect damage to these copyright holders. The existing copyright detection methods used in public institutions for solving this problem are limited, while the piracy sites are ever-changing. Methods are being continuously developed to achieve better detection results. To this end, it is possible to detect the latest infringement site domain by detecting the infringement site domain that is constantly changed through the search engine. This paper proposes an improved piracy site detection method using a search engine to prevent the damage caused by piracy sites.

Joint PCA and Adaptive Threshold for Fault Detection in Wireless Sensor Networks (무선 센서 네트워크에서 장애 검출을 위한 결합 주성분분석과 적응형 임계값)

  • Dang, Thien-Binh;Vo, Vi Van;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.69-71
    • /
    • 2020
  • Principal Component Analysis (PCA) is an effective data analysis technique which is commonly used for fault detection on collected data of Wireless Sensor Networks (WSN), However, applying PCA on the whole data make the detection performance low. In this paper, we propose Joint PCA and Adaptive Threshold for Fault Detection (JPATAD). Experimental results on a real dataset show a remarkably higher performance of JPATAD comparing to conventional PCA model in detection of noise which is a popular fault in collected data of sensors.

Enhancing Malware Detection with TabNetClassifier: A SMOTE-based Approach

  • Rahimov Faridun;Eul Gyu Im
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.294-297
    • /
    • 2024
  • Malware detection has become increasingly critical with the proliferation of end devices. To improve detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning techniques are employed to train models on extensive datasets and evaluate various features, while deep learning algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware detection techniques. Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions, thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models.