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Abstract 
Malware detection has become increasingly critical with the proliferation of end devices. To improve 

detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine 
learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption 
of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning 
techniques are employed to train models on extensive datasets and evaluate various features, while deep learning 
algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a 
novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware 
detection techniques. 

Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the 
challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions, 
thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can 
effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models. 

 
1. Introduction 

Malware presents a significant threat to data integrity, 
privacy, and operational continuity, underscoring the 
importance of robust computer system and network 
security in the digital era. The term "malware," short 
for malicious software, encompasses a broad range of 
software designed to damage or exploit networks, 
services, or programmable devices. Developing 
effective countermeasures necessitates a 
comprehensive understanding of malware analysis. 
This process involves examining a malware sample 
to ascertain its functionality, origin, and potential 
impact. Effective malware defense involves 
deconstructing and analyzing malicious code to 
understand its components, execution pathways, and 
communication methods, with the aim of detecting, 
mitigating, and ultimately preventing malware 
attacks. 
Malware analysis traditionally employs two principal 
approaches: dynamic analysis, observing malware in 
action, and static analysis, examining the malware 
without execution [1]. While these methods have 
achieved some success, they face challenges related 
to scalability, evasion tactics employed by malware 
authors, and the continuous emergence of new 
malware variants daily. Consequently, there is a 
pressing need for more advanced and adaptable 
solutions to effectively counter these issues. 
This introduces DL, a subset of ML characterized by 
models trained to perform tasks based solely on text, 
images, or audio data [2]. Deep learning models, 
particularly those designed for structured data 
analysis like the innovative TabNet architecture, offer 

promising avenues for enhancing malware detection. 
Unlike conventional ML models that often rely 
heavily on extensive feature engineering, DL models 
possess the innate ability to autonomously identify 
complex patterns and relationships directly from the 
data. 
We introduce TabNet, a state-of-the-art deep neural 
network (DNN) framework designed specifically for 
tabular data analysis, featuring the following key 
enhancements: 

• TabNet simplifies the data preparation 
process by directly handling raw tabular data, 
eliminating the need for preprocessing. 

• It employs training based on gradient descent, 
which enhances learning efficiency and simplifies 
integration into end-to-end learning pipelines. 

• TabNet dynamically allocates computing 
resources to the most significant features, thereby 
improving interpretability. It does this by 
selectively focusing on specific features at each 
decision step through the application of sequential 
attention. 

 
2. Literature review 

Recently, DL methods have been employed to develop 
intelligent decision-making machines. Given the ever-
evolving nature of sophisticated malware threats, researchers 
have devised various frameworks for malware detection. The 
majority of these initiatives concentrate on creating solutions 
for binary malware detection powered by artificial 
intelligence. 

The application of DL methods for malware classification 
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was examined by Olowoyo et al. [3]. By using a transfer 
learning strategy and representing malware as images, they 
are able to classify them with an average accuracy of 98.8%. 

An RNN, LSTM, and GRU-based malware classification 
model was presented by Chen Li et al. [4]. Their findings 
demonstrated that the suggested RNN model, which analyzes 
lengthy sequences of API calls, performs well in malware 
classification. 

The use of DL and ML in malware detection was 
investigated by Rathore et al. [5]. They use supervised and 
unsupervised learning methods, and they use opcode 
frequency as a feature vector. The results showed that 
Random Forest performed better than Deep Neural Networks 
and that Deep Auto-Encoders perform better than Deep 
Neural Networks. 

Using API calls, Catak et al. [6] carried out study on 
malware detection. They used LSTM, K-Nearest Neighbors 
(KNN), Decision Trees (DT), and Support Vector Machines 
(SVM) as part of their machine learning method and 
contrasted shallow learning with deep learning algorithms. 
Out of the eight malware classes in the dataset, LSTM had 
the best accuracy and F1-score. 

 
3. TabNet Architecture Overview 

TabNet is a deep learning architecture [7] meticulously 
devised for the nuanced domain of tabular data. It excels in 
extracting intricate patterns and achieving interpretability, a 
trait seldom seen in complex models. Below we detail the 
architecture's core components: 

The Encoder Architecture: As depicted in Figure 1a, the 
TabNet encoder initiates by normalizing raw input features 
through Batch Normalization (BN). This standardization 
ensures consistent data flow throughout the network. The 
encoder's architecture is segmented into several decision 
stages, each responsible for a segment of the output. Within 
these stages, two critical modules operate: The Feature 
Transformer, executing non-linear transformations of the 
data, and the Attentive Transformer, which dynamically 
assigns weights to features. The model's predictive 
capabilities are progressively enhanced by the data's divided 
paths, which persist through subsequent decision steps and 
cumulatively contribute to the final output. 

The Decoder Architecture: In addition to the encoder's 
role, the decoder, as shown in Figure 1b, is tasked with 
reconstructing the input features. It enhances the encoding 
stage by minimizing the reconstruction error, thereby 
retaining the most informative features for the model's 
predictions. 

Feature Processing: As illustrated in Figure 1c, the 
Feature Transformer architecture encompasses both shared 
and step-dependent layers. The step-dependent layers 
introduce flexibility and allow for fine-tuning at each 
decision point, whereas the shared layers provide a stable 

foundation for transformation across the model. 
The Attentive Transformer with Prior Scales: A distinctive 

feature of TabNet is its attentive transformer, which utilizes 
prior scales to modulate attention across features, ensuring a 
comprehensive method for feature selection. This 
functionality is illustrated in Figure 1d. 

 
 

<Fig. 1> Tabnet Architecture 

 
 

TabNet's architecture employs a sequential, attention-driven 
process to incrementally select and refine features, a process 
depicted in Figure 1. This design enables instance-wise 
feature selection, making it versatile across a wide range of 
tabular data scenarios. Moreover, the architecture's decision-
making transparency stands out as a hallmark of its 
interpretability. 
 

4. METHODOLOGY 

In this study, we examined the effectiveness of TabNet in 
malware detection, a process that entails multiple steps 
including data collection and the identification of malicious 
software. Fig. 1 illustrates the system architecture of our 
proposed technique. 

 
<Fig. 1> Tabnet Architecture 

 
 

We utilized TensorFlow, an open-source machine learning 
library developed by Google, to construct our deep learning 
models. TensorFlow's architecture is both versatile and 
efficient, facilitating the construction and training of neural 
networks. Utilizing its high-level Keras API allowed us to 
rapidly and effortlessly build our models, while TabNet 
calculations were implemented to expedite training. Our 
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investigation primarily focused on assessing the TabNet 
model's effectiveness. 

The Synthetic Minority Over-Sampling Technique 
(SMOTE) represents an innovative method for addressing 
unbalanced datasets, widely used in machine learning [8]. 
Unlike simple oversampling, SMOTE generates synthetic 
samples from the minority class to balance class distribution, 
thereby avoiding the repetition of minority class instances 
and mitigating overfitting risks. SMOTE fosters the creation 
of a more representative and varied dataset within the feature 
space for classifier training by interpolating new instances 
between existing minority samples. This approach enhances 
the model's ability to generalize by offering a deeper insight 
into the minority class's feature space. 

 
4.1.  Description of Dataset 

The dataset used in this study consists of 138,047 PE 
(Portable Executable) header samples, which are provided by 
H. Rathore [5]. It includes 41,323 benign and 96,724 
malware samples. The dataset is available on a GitHub 
repository [9]. The SMOTE was employed to address the 
class imbalance and enhance the representation of the 
minority benign class in subsequent models. Detailed 
statistics for the dataset are presented in Tab. 1. 

 
<Tab. 1> Statistics of Dataset Before and After Balancing 

Condition Sample Counts Total 
Benign Malicious 

Imbalanced 41,323 96,724 138,047 
Balanced 96,724 96,724 193,448 

 
4.2. EXPERIMENTAL SETUP 

The studies were carried out on a computer system 
equipped with an Intel64 Family 6 Model 165 Stepping 3 
CPU and 16GB of RAM. No additional GPUs were used for 
computations. The models were implemented and analyzed 
in Python. Several major libraries were used in our research, 
including NumPy for numerical computing, TensorFlow and 
PyTorch for developing and training neural network models, 
and Scikit-Learn and Pandas for data manipulation and 
machine learning. This software stack provides a reliable and 
adaptable computer environment for our experiments. Tab. 2 
provides detailed hardware and software specifications. 

 
<Tab. 2> System Specifications 

Component Specification 
CPU Intel Core i9-10900K (3.70 GHz) 9900K (9th Gen) 
GPU NVIDIA GeForce RTX 2080 Ti 
RAM 64GB - 3600 MHz 
Language Python 
Software NumPy, TensorFlow, Scikit-Learn, Pandas, PyTorch 
 

4.1. Data Preprocessing 
The datasets were subjected to crucial preprocessing steps 

before the training of the model to enhance data quality and 

focus: 
• Check for missing value. 
• Remove "Name" and "hash" columns. 
• Normalization of features for training efficiency. 

 
4.2. Data Split 

The datasets were subjected to crucial preprocessing steps 
before the training of the model to enhance data quality and 
focus: 

• 60\% for training  
• 20\% for testing. 
• 20\% for validation. 

 
4.3. Training Scenarios Overview 

Our study utilized the TabNetClassifier in two principal 
scenarios to assess its effectiveness in detecting malware 
across different class distributions. The key differentiator 
between these scenarios was the class balance, which was 
adjusted using the SMOTE. 
 
Scenario 1: Imbalanced Dataset 

Initially, the model underwent training using the original 
dataset, notably imbalanced with a predominance of 
malicious software instances. This setup was designed to 
evaluate the model’s inherent capacity to manage class 
imbalances. 
Scenario 2: Balanced Dataset via SMOTE 

Subsequently, SMOTE was applied to create a balanced 
dataset, ensuring equal representation of malware and benign 
instances. This adjustment tested the hypothesis that a 
balanced class distribution would enhance detection 
sensitivity. 

Common Model Configuration 
For both scenarios: 

• Epochs: Training was limited to 100 epochs, with 
early stopping based on validation performance. 

• Batch Sizes: A batch size of 1024 and a virtual batch 
size of 128 were used. 

• Optimizer: The Adam optimizer with a learning rate 
of 0.02 was employed. 

• Activation Functions: Sparsemax was utilized for 
the attention mechanism, and ReLU for feature 
transformation, maintaining the model's 
interpretability and efficiency. 

The complete design of the proposed methods is outlined in 
Tab. 3. 

<Tab. 3> Comparison of Training Scenarios Before and After Applying 
SMOTE 

Feature 
TabNetClassifier 

Before SMOTE After SMOTE 

Class Distribution Imbalanced Balanced 
Sampling Technique None SMOTE 
Max Epochs 100 100 
Batch Size 1024 1024 
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Virtual Batch Size 128 128 
Optimizer Adam Adam 
Learning Rate 0.02 0.02 
Attention Activation Func. Sparsemax 
Feature Transf. Activation Func. ReLU 

 
4.4. Evaluation Criteria 

We use an extensive collection of evaluation criteria, each 
providing distinct insights into different facets of the 
behavior of our model, to gauge its performance: 

• Accuracy is defined as the number of correct 
predictions made by the model, in contrast to all 
predictions ever made. 

• Precision measures the proportion of correctly 
predicted positive values. 

• Recall measures the percentage of actual positive 
values correctly predicted by the algorithm. 

• F1-Score is the harmonic mean of precision and 
recall. 

Each of these metrics contributes to a holistic understanding 
of the model's effectiveness, facilitating informed 
adjustments and improvements. 
 

5. RESULTS AND DISCUSSION 

The evaluation of the TabNetClassifier's efficacy in 
malware detection showed significant improvements 
following the application of SMOTE. Initially, the model 
achieved a high accuracy of 99.03%, despite being tested on 
an imbalanced dataset. The use of SMOTE to balance the 
dataset led to a marginal increase in accuracy to 99.10%. 
More notably, both precision and recall were enhanced, with 
precision reaching 99.03% and recall improving to 99.19%, 
reflecting a heightened sensitivity in detecting malware 
instances. These improvements collectively highlight the 
beneficial impact of SMOTE on the model's performance, 
particularly in effectively identifying the minority class. 
Comparison results are detailed in Tab. 4. 

 
<Tab. 3> Model Performance 

 Accuracy Precision Recall F1-Score 
Pre-SMOTE 99.03% 98.24% 98.49% 98.37% 
Post-SMOTE 99.10% 99.03% 99.19% 99.11\% 
 

6. RESULTS AND DISCUSSION 

The findings of this study underscore the effectiveness of 
the TabNetClassifier in malware detection, particularly 
highlighting its interpretability and performance. Notably, the 
application of SMOTE has demonstrated a significant 
enhancement in precision, recall, and F1-score metrics, 
emphasizing the importance of balanced datasets in 
improving model training outcomes. Looking ahead, future 
research endeavors will explore alternative data balancing 
techniques and investigate the integration of TabNet with 
other models to further enhance cybersecurity defenses. 
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