
ETRI Journal. 2021;43(3):549–560. | 549wileyonlinelibrary.com/journal/etrij

1 | INTRODUCTION

Cyberattackers conduct criminal activities for various pur-
poses against individual users, enterprises, and organizations
worldwide. These cyberattacks are often difficult to identify
with traditional signature- based detection because attackers
continually find ways to bypass the detection methods [1,2].

In 2016, the amount of fileless malware, which is mal-
ware that does not exist in file systems, was determined to
have rapidly increased [3]. Consequently, fileless attacks
using a PowerShell script have been increasing. PowerShell
is the scripting language and command- line shell provided by
Microsoft [4] and is often used for system management and
automation purposes because it provides powerful scripting

capabilities. Attackers can also utilize the functional benefits
of PowerShell scripts, for instance, performing malicious be-
havior and command operations using Windows Management
Instrumentation or PowerShell, especially when it is installed
on the victim's system [5].

Malware has been evolving over time, and unknown mal-
ware is difficult to detect as it may be combined with var-
ious types of existing malware or hide its operations from
the system monitoring tools. Consequently, researchers have
introduced artificial intelligence (AI) technology to perform
intelligent detection of evolving malicious behavior [6,7] and
have conducted studies to increase the performance of the
model. Although in- depth research on PowerShell and the
malware that exploits it has been scarce, recent studies [8,9]

Received: 18 May 2020 | Revised: 5 November 2020 | Accepted: 25 November 2020

DOI: 10.4218/etrij.2020-0215

O R I G I N A L A R T I C L E

Evaluations of AI- based malicious PowerShell detection with
feature optimizations

Jihyeon Song1,2 | Jungtae Kim2 | Sunoh Choi3 | Jonghyun Kim2 | Ikkyun Kim2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2021 ETRI

1ICT (Information Security Engineering),
University of Science and Technology,
Daejeon, Rep. of Korea
2Cyber Security Research Division,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea
3Department of Software Engineering,
Jeonbuk National University, Jeonju, Rep.
of Korea

Correspondence
Ikkyun Kim, Cyber Security
Research Division, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea.
Email: ikkim21@etri.re.kr

Funding information
This research was supported by the Institute
for Information & Communications
Technology Promotion (IITP) grant funded
by the Korean government (MSIT) (no.
2019- 0- 00026, ICT infrastructure protection
against intelligent malware threats).

Cyberattacks are often difficult to identify with traditional signature- based detection,
because attackers continually find ways to bypass the detection methods. Therefore,
researchers have introduced artificial intelligence (AI) technology for cybersecurity
analysis to detect malicious PowerShell scripts. In this paper, we propose a feature
optimization technique for AI- based approaches to enhance the accuracy of mali-
cious PowerShell script detection. We statically analyze the PowerShell script and
preprocess it with a method based on the tokens and abstract syntax tree (AST) for
feature selection. Here, tokens and AST represent the vocabulary and structure of
the PowerShell script, respectively. Performance evaluations with optimized fea-
tures yield detection rates of 98% in both machine learning (ML) and deep learning
(DL) experiments. Among them, the ML model with the 3- gram of selected five
tokens and the DL model with experiments based on the AST 3- gram deliver the best
performance.

K E Y W O R D S

Deep learning, feature optimization, fileless malware, machine learning, PowerShell script

www.wileyonlinelibrary.com/journal/etrij
mailto:
https://orcid.org/0000-0002-3318-506X
mailto:
mailto:
mailto:
mailto:
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:ikkim21@etri.re.kr

550 | SONG et al.

regarding the analysis of malicious PowerShell scripts have
been reported. However, these studies are limited in that they
focused on the PowerShell obfuscation technique only.

The dataset used in this study contains the PowerShell
script used by the Emotet malware that was distributed in
december 2018. Emotet malware [10] was first identified in
2014 and still appears as a variant malware. Recently, it has
been distributed in the form of a malicious document file at-
tached to a phishing email that seems to convey information
about COVID- 19 infection status. The document file con-
tains a PowerShell script for downloading the Emotet mal-
ware, and various techniques are used to hide the contents of
these scripts.

According to IGLOO Security [11], attackers have de-
veloped obfuscation methods to minimize the source code
exposure of their malicious PowerShell scripts and bypass
antivirus products and other security solutions. Base64-
encoded PowerShell scripts can be detected by behavior-
based security solutions (such as endpoint detection and
response). However, they are difficult to detect using existing
pattern- based antivirus products. In addition, in the case of
PowerShell, they can be more difficult to detect because mul-
tiple obfuscations are easy to implement.

Figure 1A shows a part of the malicious PowerShell script
code containing the object linking and embedding (OLE) file
used as the dataset in this paper. In Figure 1A, the capital let-
ters are the Base64- encoded malicious part that the attacker
intended to make difficult for the analyst to analyze. This
string can be Base64 decoded to obtain the original code con-
taining the shellcode that performs the malicious behavior.
Figure 1B is a snippet of that code, and “$hI” is the shellcode
that establishes a TCP connection to the attacker. Therefore,
we first need to find and extract the PowerShell script in-
cluded in the OLE file, and then decode the Base64- encoded

part in the script in order to detect the shellcode that performs
the malicious behavior. This is a simple code sample that
makes it possible to detect shellcode with a single Base64 de-
coding, but it can be difficult to detect malicious PowerShell
scripts that are embedded within document files.

In this paper, we propose a feature optimization method
to analyze PowerShell scripts statically to then determine
the optimal feature combinations for AI- based malicious
PowerShell detection. We evaluated the performance of our
method by using our training dataset as input to three differ-
ent machine learning (ML) and deep learning (DL) models
and analyzing the performance of each model. The experi-
mental results show that the random forest (RF) model with
five token (5-token) 3- grams and the DL models with ab-
stract syntax tree (AST) 3- grams have detection rates of ap-
proximately 98% and false- positive rates (FPRs) of < 0.1%.
In addition, the malicious script used in the Emotet malware
described above is extracted, the Base64 is de- obfuscated,
and the combination of features proposed in this paper is ex-
tracted. As a result of the experiment, it was confirmed that
Emotet can be properly classified as malicious.

The remainder of this paper is organized as follows.
Section 2 discusses previous research and related work.
Section 3 introduces feature optimization techniques for mali-
cious PowerShell script detection with feature extraction pro-
cesses. Section 4 presents the structure of the pre- processing
system and experimental AI models. Section 5 describes the
feature extraction process in detail with the training data-
sets used for the evaluations. Then, the results of the perfor-
mance evaluations of the ML and DL models are discussed in
Section 6. Finally, Section 7 summarizes the proposed work
with directions for future work.

2 | RELATED WORK

Prior to this study, we conducted a DL- based malicious
PowerShell detection experiment with combinations of
selected tokens [12]. Previously, 5- token types of the
PowerShell script were selected to create a token combina-
tion for feature extraction. In our previous study, we utilized
the 22 261 normal and 4150 malicious PowerShell scripts
as a test dataset. Then, we evaluated the performance using
5- fold cross- validation with a convolutional neural network
(CNN), long short- term memory (LSTM), and CNN- LSTM
combined models. The experimental results of the three
proposed models had an average detection rate of approxi-
mately 93% and an FPR of approximately 0.4%. However,
we only conducted a validation experiment with a limited set
of 4- tokens and did not conduct experiments with the other
features for performance comparison. Therefore, our present
study attempts to overcome the limitations of the previous
study.

F I G U R E 1 Malicious PowerShell script example: (A)
PowerShell script containing the OLE file and (B) de- obfuscated
shellcode [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

 | 551SONG et al.

Hendler and others [13] used a natural language process-
ing and character- level CNN- based detector with 60 098 nor-
mal and 6290 malicious PowerShell commands as datasets to
detect malicious PowerShell commands. After analyzing the
PowerShell commands with the deduplication process, they
utilized a character set with a frequency of more than 1.4%
of overall commands for the training feature information to
exclude rare characters. In total, 62- length vector arrays were
applied to the detector by including case- sensitive bit charac-
ters. They evaluated the performance using a variety of de-
tectors, and as a result of 2- fold cross- validation, the 3- gram
detector obtained a true- positive rate (TPR) of 0.98 when the
FPR was at 1:1000. However, the limitation of the study was
its narrow focus only on PowerShell commands without con-
sidering the entire script itself.

Rubin and others [14] proposed a contextual embedding
method and DL to improve the overall performance. They
attempted to overcome the lack of labeled data by learning
the contextual embedding from the unlabeled data. With
contextual embedding, words with similar meanings can be
represented in a vector of embedding space; thus, malicious
scripts can be detected with similarity matching. The authors
performed training and evaluation by utilizing data collected
from the Microsoft Antimalware Scan Interface (AMSI),
which includes 111 593 normal and 5383 malicious instances
of PowerShell code. They also included an unlabeled dataset
of approximately 370 000 unlabeled PowerShell scripts and
modules for the training data to simulate a realistic dataset.
In this study, they conducted an experiment with a total of
12 models and performed 3- fold cross- validation. At an FPR
level of 1:1000, the TPR of the CNN- W2V model was ap-
proximately 0.94. However, the contextual embedding was
performed with no distinction between normal and malicious
scripts, which may reduce the overall accuracy, instead of
using a labeled script as training data.

Rusak and others [15] used the depth and node count infor-
mation of the AST nodes to classify a malicious PowerShell
script based on its family type information. They utilized 4079
malicious PowerShell scripts as a dataset. By recursively ex-
ploring the PowerShell script and extracting the depth and num-
ber of AST nodes, the hyperparameter of an RF classifier was
optimized at the maximum node depth. Then, the PowerShell
scripts were labeled according to each type of malware family
by using a 3- fold cross- validation test with the RF classifier.
In their experiment, they achieved 85% classification accu-
racy. In addition, the authors built an embedding matrix of the
malicious PowerShell script according to its AST node types
and performed experiments to show the relationship between
similar embedding information. However, the classification of
malicious types was limited to using the malicious PowerShell
scripts only; consequently, the results were narrow in focus. In
addition, although information about the depth and number of
AST nodes facilitates the identification of the entire structure

of the scripts, the distinction between a normal and malicious
PowerShell script may not be clear.

To overcome the limitations of previous studies, we ana-
lyzed the entire content and data structure of the PowerShell
script, such as the AST node types (AST classes), which
helps to consider various feature combinations from the de-
tailed composition of the script content block and improve
the detection accuracy.

3 | PROPOSED FEATURE
OPTIMIZATION METHOD

This section describes the proposed method for PowerShell
script analysis and the feature selection process of combining
various features for performance enhancement.

3.1 | Pre- processing of PowerShell scripts

3.1.1 | Token- based keyword extraction

PowerShell scripts can be parsed by Microsoft- defined token
units using PSParser Tokenize [16]. Microsoft classifies
the tokens into 20 categories. Using the entire PowerShell
script as the dataset, the frequency information of all related
token types was extracted except for the tokens correspond-
ing to operators, newlines, and parentheses. This dataset
contains 22 261 normal scripts and 4214 malicious scripts,
and the sources and types of script samples are detailed in
Section 5.1. The pre- processing of the PowerShell script in
this work mainly focused on the six types of tokens indicated
by asterisks in Table 1. The Number and String tokens are

T A B L E 1 Token types: frequency and description

Token types Count Description

*Variable 1 757 455 Variable after the “$”
character

Number 1 357 818 All numbers in the
PowerShell scripts

String 770 950 All strings in the
PowerShell scripts

* Member 762 072 Object properties and
methods

* Command 577 446 Commands for the action
to perform

* CommandParameter 474 777 Parameters used with
Command

* Keyword 425 713 Condition, branch
statement, etc.

* CommandArgument 367 884 Arguments used with
Command

552 | SONG et al.

variables, and consequently, they are excluded to reduce the
noise in the identification process to distinguish between nor-
mal and malicious scripts.

The token types for all types of behavior performed
in PowerShell mostly consist of Command (Com),
CommandParameter (Com_Param), and CommandArgument
(Com_Arg), which correspond to execution commands with
related variable and argument values, respectively. By ana-
lyzing these 3- token types, it is possible to determine the at-
tacker's intention from the PowerShell script.

Keyword tokens include all tokens that are classified as
keywords, including conditional or branch statements, which
can be analyzed together with other tokens, such as Com to-
kens. For example, Keyword and Com tokens can be used
together in the case of a command execution in PowerShell,
especially when an attacker aims to perform the desired mali-
cious behavior when a certain condition is met.

The Variable tokens contain all the variables created in the
script. Variable names can be easily modified according to the
user's needs. The number of variables can be very large when
extracting Variable tokens because all of them are counted as
different variables. However, this occurrence could be com-
mon when an attacker writes a script that references another
script or when a variable name is used to clarify what a func-
tion is doing. In addition, when checking the condition of a
specific variable in a conditional or branch statement, which
frequently occurs in the analysis of a Keyword token, the syn-
tax can be accurately assessed by checking a Variable token
that appears later. Thus, it is logical to analyze the Keyword
and Variable tokens together, regardless of their number.

According to Microsoft [17], objects play an important
role in PowerShell; in particular, Member tokens represent
the properties and methods of PowerShell objects. Although
the features of this token type differ slightly from those of the
other five types considered in this study, the Member token
type is a crucial feature that represents the characteristics of
PowerShell objects.

With the proposed six token types, the final issue to con-
sider is that the PowerShell script is case insensitive when
running commands. Certain malicious PowerShell scripts
use a mixed case for script obfuscation. This characteristic
makes it difficult for the user to read the contents, and the ac-
tual behavior is the same as when the script is represented in
lowercase letters. Therefore, when analyzing the PowerShell
scripts, the case- sensitivity issues of the extracted tokens
can be neglected while processing the feature extraction and
experiments.

3.1.2 | AST- based keyword extraction

The second method of parsing a PowerShell script is based
on AST methods [18]. Although analysis using the Tokenize

method can identify all the contents and lexical units of the
script, analysis using the AST can identify the overall struc-
ture of the script by assessing its block units.

Because normal (or benign) and malicious PowerShell
scripts behave differently, their roles and overall structures
differ. Therefore, we extracted the AST structure and selected
it as a feature to distinguish between normal and malicious
contents. Furthermore, the order of script construction can
be analyzed with an n- grams approach to utilize the struc-
tural features more effectively. In this study, we selected the
commonly used 3- gram approach to analyze three consecu-
tive pieces of structural information together. As Microsoft
has defined 108 AST classes [19], we analyzed all of the
PowerShell scripts that were used as datasets and extracted
all 108 classes accordingly. Figure 2 shows an example of
an AST structure obtained by parsing a sample PowerShell
script.

3.2 | Feature optimization

As explained in the previous section, the six proposed token
types were used as the selected set of features in this study. We
suggest three groups of related token types, as summarized in
Table 2. For Group 1, the token types Com, Com_Param,
and Com_Arg (Com, etc.) were selected, as they are related
to each other while executing the commands. The Keyword
and Variable tokens in Group 2 were selected, as they are
often deployed together in conditional or branch statements
of PowerShell. Lastly, the Member token is the only token
type in Group 3, as it is a crucial component that represents
the characteristics of an object, unlike other tokens.

Although the token types within the groups listed in
Table 2 are interrelated, they may not be perfect combina-
tions of token types for analyzing and detecting malicious
PowerShell scripts. Groups 1 and 2 are not relevant in all

F I G U R E 2 AST structure example

ScriptBlockAst

NamedBlockAst

ParameterAst

VariableExpressionAst

ParamBlockAst

AssignmentStatementAst

VariableExpressionAst CommandExpressionAst

VariableExpressionAst

T A B L E 2 Related groups of token types

Group Token types

1 Command, CommandParameter, CommandArgument

2 Keyword, Variable

3 Member

 | 553SONG et al.

situations, but can be used together to execute the desired
commands under a certain condition. A combination such as
this can be found especially in a malicious script with the aim
of downloading malware from an attacker server (command)
when the victim's PC is not a virtual machine (condition).

Consequently, five types of tokens exist in the combina-
tions in Groups 1 and 2 that help to more accurately classify
and detect malicious PowerShell scripts. The Members token
in Group 3, as explained earlier, may not be significantly re-
lated to the other types of tokens. Therefore, we used a single
Member token as a secondary feature instead of including it
with the other token types. A simple experiment was con-
ducted to determine the most appropriate combinations of the
proposed token types. The results are provided in Table 3.

In this experiment, 1000 normal and malicious PowerShell
script samples were randomly selected and used as a dataset
to evaluate the effectiveness of the selected token combina-
tions. Among them, 80% of the data were used for training,
and the remaining 20% were used for testing purposes. The
performance of each was measured with the CNN, LSTM,
and CNN- LSTM combined models. Table 3 lists the aver-
ages of the experimental results based on the three models.
The results show that the approach based on 5- tokens has the
best performance overall, with a recall of 90.6% and an FPR
of 4%.

4 | STRUCTURE OF THE
DETECTION SYSTEM

Section 4 presents the overall structure of the proposed AI-
based malicious PowerShell detection system used in this
study. This system consists of data pre- processing and ex-
perimental system parts for malicious PowerShell detection
and classification, as shown in Figure 3.

4.1 | Pre- processing system

The data pre- processing part of the detection system performs
script analysis and generates training data. The PowerShell
script is initially checked for the obfuscation methods used and
then de- obfuscated to convert into plaintext script for static
analysis. The de- obfuscated script is then further analyzed
using the tokenize and AST methods to extract the different
types of tokens and AST classes accordingly to generate the
training data for the experimental AI models. Detailed descrip-
tions of the pre- processing and procedures for the training data
generation are provided in Sections 5.2 and 5.3, respectively.

4.2 | Experimental models

The experimental models employed in this study include three
ML and three DL models. For the ML models, RF, support-
vector machine (SVM), and K- nearest neighbor (K- NN) are
used, and for the DL models, the CNN, LSTM, and CNN-
LSTM models are used. The ML model was built using the
Jupyter virtual environment in a Windows environment with
the sklearn and Keras packages. The DL model was built using
Keras, which is an open- source neural network library written
in Python, on a Ubuntu server with a GPU (GeForceGTX 1080
Ti). For comparison with the results of the DL experiment, the
length of the maximum sequence was set to 800 for both ML
and DL. When the sequence length was insufficient, zero pad-
ding was added. The number of epochs and batch size were set
to 1 for both ML and DL. The layer structures of the three DL
models used in the experiments are depicted in Figure 4.

4.2.1 | RF

The RF model [20] is mainly used for classification and detec-
tion, and is an ensemble technique for learning multiple deci-
sion trees. The decision tree may have limitations for general
use in certain fields because its overall performance tends to
have a strong dependency on the given datasets. Therefore, RF
was selected to overcome these problems. The RF may not be
affected much by noise because the prediction of the decision
tree is uncorrelated. Therefore, the generalization performance
of RF is superior to that of the approach based on a decision tree.

4.2.2 | SVM

The SVM [21] model, also known as a support- vector network,
is generally utilized for pattern recognition and data analysis for
classification and regression. Based on the two types of data-
sets the SVM is provided with, the algorithm is optimized to
determine the best matching type between two categories given

T A B L E 3 Experimental results for token combinations

Token Group 1
Group 1 and
keyword

Group 1 and
variable 5- tokens

Recall 90.0 90.3 84.0 90.6

FPR 4.3 5.0 4.3 4.0

F I G U R E 3 Structure of the detection system

554 | SONG et al.

unknown data. The SVM aims to maximize the margin, which
is the distance between hyperplanes, for more accurate catego-
rization of the different data types or separation of the datasets.

4.2.3 | K- NN

The K- NN algorithm [22] is a model designed for pat-
tern recognition, especially for data classification and

regression. The K- NN model with the previously labeled
data helps to identify a similarity measure with the shortest
distance from the k neighbor data when new data are avail-
able. The K- NN algorithm utilizes the Euclidean distance
measurement for distance calculations. The disadvantage of
the algorithm is the overall processing delay for data clas-
sification, especially when a large training dataset is used.

4.2.4 | CNN

The CNN model [23,24] is generally deployed to analyze and
classify image, video, and text data, and is the most widely
used algorithm for DL. CNN recognizes special patterns
in the information consisting of input images or text, and
extracts a meaningful feature set automatically. The fully
connected neural networks are connected to all the neurons
in adjacent layers. This neural network treats the input data
as neurons of the same dimension and cannot use the spa-
tial information of the data. Unlike a fully connected neural
network, a CNN can utilize spatial information because it
can maintain and process the shape information of the given
data. In addition, the overall learning process requires less
time than the recurrent neural network (RNN) model, which
is described in the following section. The layered structure
of the CNN model used in this study is shown in Figure 4A.

4.2.5 | LSTM

The RNN model [25] is specifically utilized to process se-
quential data types such as voice- and video- recorded format.
The neural network does not support buffering of informa-
tion obtained in the previous DL stage until the next stage.
However, the RNN learns new data based on the information
from the previous step, and this process is repeated for all
new data. However, the RNN model experiences the vanish-
ing gradient problem [26] when the previous step, in which
the information was obtained, is far from the current step in
which the information is used. The LSTM [27] model is de-
signed to overcome these problems with a structural design
that adds the cell state to the hidden state of the RNN, and
consequently, it can maintain the intended information for a
long time. The cell state of the LSTM can determine whether
information is reflected in the data using an input, output,
or forget gate. The layered structure of the LSTM model is
shown in Figure 4B.

4.2.6 | CNN- LSTM

The CNN- LSTM model [28], as the name implies, com-
bines the CNN and LSTM approaches. The combined model

F I G U R E 4 DL models: (A) CNN model, (B) LSTM model,
and (C) CNN- LSTM model [Colour figure can be viewed at
wileyonlinelibrary.com]

Training data

Embedding

Dropout

Convolution

GlobalMaxPooling

Dense

Dropout

Dense

Result

(A)

Training data

Embedding

LSTM

Dense

Result

(B)

Training data

Embedding

Dropout

Convolution

MaxPooling

Dense

Result

LSTM

(C)

www.wileyonlinelibrary.com

 | 555SONG et al.

utilizes the spatial information of the CNN and the tempo-
ral information of the LSTM together. Consequently, this
approach has more flexibility for application in various DL
fields than other models. In addition, the CNN- LSTM model
sequentially integrates the local features extracted by the
CNN into the LSTM. If only the CNN model was used to
process the input data, it might not be able to identify the
dependencies between the large datasets for a long period.
Therefore, the problems associated with previous models
can be solved by using the CNN and LSTM together. The
layer configuration of the CNN- LSTM model can be found
in Figure 4C.

5 | EXPERIMENTAL SETUP

5.1 | Datasets

In the experiment, a total of 26 475 PowerShell scripts were
used, including 22 261 normal and 4214 malicious scripts.
The PowerShell script samples contained approximately
3000 publicly available Base64- encoded scripts [29] and
nearly 400 OLE files containing malicious PowerShell scripts
provided by ESTsecurity [30]. The remainder of the dataset
consists of a script that distinguishes between normal and
malicious contents using VirusTotal [31] among the publicly
available unlabeled PowerShell scripts [32]. The script labels
were classified as malicious when a malicious PowerShell
script was detected in 5% or more of the detection engines
registered in VirusTotal.

5.2 | Pre- processing of datasets

The data used in the experiment can be broadly divided into
Base64- encoded scripts or OLE files and regular scripts.
Among them, the Base64- encoded scripts and OLE object
files do not support static analysis as they are encoded; there-
fore, an additional pre- processing step is required before the
proposed feature extraction process. We initially decoded the
Base64- encoded PowerShell scripts and the analyzed OLE
object files to find and extract the target PowerShell scripts
and related features, as described in Section 3.1. Detailed in-
formation on the pre- processing is as follows.

5.2.1 | Analysis of the OLE files

The OLE allows a script to support embedding and linking
to documents or objects. The provided OLE files contained
malicious PowerShell scripts, and therefore, it was neces-
sary to extract the embedded PowerShell scripts to utilize
these files in the dataset. The Python- oletools package [33]

is primarily used to analyze OLE and MS Office files for
malware and debugging purposes. Several modules were
provided as a software package for file analysis. For exam-
ple, the MacroRaptor module enables the detection of mali-
cious visual basic for applications (VBA) macros, and the
olevba module provides a means of searching and extracting
the VBA macro source code from the OLE and MS Office
documents. In this study, we utilized the olevba module to
find the malicious PowerShell scripts included in the OLE
files to extract the embedded scripts.

5.2.2 | Simple de- obfuscation

An attacker can use a PowerShell script to perform any ma-
licious behavior and even employ an obfuscation technique
to avoid detection. In this study, because the features were
extracted after static analysis without actually executing the
script, the feature extraction would be difficult if the script
was obfuscated. Therefore, a simple de- obfuscation process
was performed before feature extraction. The PowerShell
script can be de- obfuscated easily using Base64 decod-
ing once or twice. In addition, a sophisticated obfuscation
method utilized in the PowerShell scripts can also be de-
obfuscated using publicly available de- obfuscation tools.
The PowerShell options used to Base64 encode the scripts
are “- enc,” “- EncodedCommand,” “- ec,” and so on [29]. The
pre- processing system searches for the PowerShell script en-
coded by the attacker using various options, after which the
system decodes the script to obtain a plaintext script using the
Base64 decoding module (b64decode).

5.3 | Feature extraction

After the de- obfuscation process, we can extract the feature in-
formation from the pre- processed plaintext PowerShell scripts.
As explained in Section 3, we extracted the lexical unit token
combinations and structural unit block of the script as feature
information. At this time, the extracted feature strings were
replaced by the unique corresponding IDs, and consequently,
the same ID was assigned for each string within the script
when the same string appeared in multiple scripts. In the case
of the AST classes, 108 fixed classes can be extracted; thus, it
was not necessary to convert them into lowercase. However,
when using tokens as a feature, only the types of tokens to be
extracted are specified and the total number is not fixed. As
tokens (vocabulary) can have the same function but are case
sensitive, all extracted tokens were converted into lowercase
strings for deduplication purposes. The sequence information
of the extracted tokens and AST classes could also be used
as additional feature information by obtaining frequencies or
reprocessing the sequence into n- gram sequences.

556 | SONG et al.

5.3.1 | Frequency

In malware analysis research, the frequency information of
the malware opcodes is often extracted and used as training
data [34]. In this study, because all six types of token and
AST classes were used as the feature set, the frequency infor-
mation about the proposed feature data, provided in Tables 1
and 2, could also be extracted and evaluated.

Because the total number of features extracted from the
scripts was large, it was necessary to limit this number. Hence,
we conducted a simple experiment by randomly assigning the
top most frequently extracted token numbers to evaluate the
overall performance of selection of the frequency informa-
tion as a feature set. Among the top 100 to 5000 most fre-
quently extracted feature sets, satisfactory performance was
measured at the top frequency numbers of 500 and 1000. The
500 most frequently extracted tokens took less pre- processing
time than the 1000 most frequently extracted tokens, but the
performance was similar. Therefore, we extracted the top 500
frequently extracted tokens, and the corresponding results are
listed in Table 4. In this experiment, the dataset we used was
identical to that described in Section 5.1, and we measured
the performance using the CNN model with 5- fold cross-
validation tests using 5- token frequency without the Member
token as learning data.

5.3.2 | 3- grams

As explained in Section 3.1.2, an analyst can identify the
overall structure of the scripts by analyzing multiple AST
structures together. Similarly, grouping- related token types
can help researchers to determine the organization of the
script content. In this study, a commonly used 3- gram se-
quence was utilized for the token and AST analysis; specifi-
cally, three consecutive pieces of structural information were
analyzed together. If the extracted token and AST sequences
were shorter than a 3- gram, zero padding was added to con-
struct a complete 3- gram sequence for building the learning
data.

5.4 | Learning the data configuration

In this study, the proposed feature optimization techniques
with the six tokens and AST were utilized with the sequence,
frequency, and 3- gram sequences to produce the learning

data. Although several different types of features were used,
the main objective was to arrange the extracted features in
sequence for the learning data. The structures of the training
data files applied in the ML and DL models are shown in
Figure 5, which depicts part of a training data file consist-
ing of a 5- token sequence extracted from the same normal
PowerShell script.

The first column of the ML training data file in Figure 5A
is labeled to distinguish benign (b) from malicious (m). The
second column contains the corresponding sequence number
of the extracted feature data. Therefore, Figure 5A can be
interpreted as a list of feature sequences extracted from the
normal PowerShell scripts.

On the other hand, the first column of the DL training data
file in Figure 5B represents the file names of the PowerShell
scripts, followed by the number of feature data extracted in
the second column. The third column is a label (0 or 1) that
can be used to distinguish a script as benign (0) or malicious
(1), and, finally, the sequence of extracted feature data is rep-
resented in the remaining columns. For instance, Figure 5B
shows a set of feature sequence data extracted from five nor-
mal PowerShell scripts.

6 | PERFORMANCE EVALUATION

This section presents the performance evaluation results ob-
tained by applying the training data files to the ML and DL
models. A total of 10 features were used in this study. Among
them, nine of the features are mainly related to simple se-
quence information of token and AST, as listed in Table 5.
We also experimented with the case- sensitive issue for the
5- token that were extracted to prove that it is meaningful to
convert the token to lowercase when it is extracted.

In all six models, 5- fold cross- validation tests were per-
formed, and the results of the detection and FPRs were
rounded to two decimal places. In Table 5 and 6 , the top
results of the ML and DL experiments are marked with an
asterisk.

T A B L E 4 Experimental results for 5- token frequency

Frequency 100 200 500 1000 5000

Recall 62.2 69.2 93.2 92.3 0.7

FPR 4.1 3.3 8.3 7.3 0.02 F I G U R E 5 Data configuration: (A) ML data and (B) DL data

Normal1 28 0 1 2 3 1 1

Normal2 19 0 26 26 12 27 28

Normal3 7 0 1 1 29 30 29

Normal4 4 0 1 3 45 1

Normal5 35 0 12 12 12 46 47

(B)

Benign1 1 2 3 1 1 4 5

Benign2 26 26 12 27 28 29 26

Benign3 1 1 29 30 29 12 31

Benign4 1 3 45 1

Benign5 12 12 12 46 47 48 49

(A)

 | 557SONG et al.

In the ML case, the best feature combination was the 5-
token 3- gram case with the RF model, which shows a signifi-
cantly higher detection rate and lower FPR than the others.
Second, the 5- token frequency and 3- gram of Member tokens
showed a detection rate of approximately 96% with a higher
FPR. Third, the 5- token sequence also shows a detection rate
of 95.6% and a FPR of 0.3%. Overall, the overall perfor-
mance of the 5- token feature combinations in the ML models
is satisfactory. Although the best results were obtained with
the 5- token sequence cases in the ML, the AST 3- gram case
had the highest detection rate of 98.5% for the DL. In partic-
ular, when the AST 3- gram was used, the detection rate was
greater than 98% and the FPR was less than 0.1% in all of
the DL models. The next highest detection rate was obtained
using the 5- token and Member token sequences in the DL
case. Direct comparison was difficult because of the different
experimental models and features that were used. The results

of the receiver operating characteristic (ROC) curve experi-
ments [35] are summarized in Figure 6.

Overall, the detection rates in the ML experiments were
higher than those in the DL experiment, but the FPR appears
to be significantly lower in the DL case. As the trade- off be-
tween sensitivity and specificity among different experiments
can be represented by the area under the ROC curve, which
is equivalent to a measure of accuracy, the AST 3- gram case
with the DL and 5- token 3- gram case with the ML models
achieved the highest detection accuracy.

When AI technology is used for malware detection, a high
detection rate is the main objective, but a low FPR is also
very important. Therefore, the DL with AST 3- gram as a fea-
ture can be seen as the most effective feature optimization
method for malicious PowerShell script detection.

As mentioned in Section 5.3, token extraction requires the
extracted characters to be converted to lowercase. When writ-
ing scripts, there may be cases in which users intentionally
mix both uppercase and lowercase characters. However, as
indicated in Table 6, the case- sensitivity issues of PowerShell
scripts can be neglected at the functional system level. To
prove this proposal, we prepared a case- sensitive 5- token se-
quence and a sequence in which all tokens were converted to
lowercase to conduct the experiment. In the same way as the
previous experiment, we performed 5- fold cross- validation
on six models and compared the results. We argue that the
performance is superior for lowercase 5- token than when the
token is case- sensitive. Therefore, we propose converting all
extracted feature information into lowercase characters to re-
duce the number of duplicated tokens and to optimize the
features for detecting malicious scripts based on similar ma-
licious behavior.

Table 7 compares the studies surveyed in Section 2.
Direct comparison of the experimental results is difficult
because the datasets, detection models, extracted features,
and experimental methods used in each study are different,
but they can be indirectly compared based on the detection
performance presented in the study. In the study of Rusak

T A B L E 5 Experimental results

Feature

RF SVM K- NN CNN LSTM CNN- LSTM

Recall FPR Recall FPR Recall FPR Recall FPR Recall FPR Recall FPR

AST 88.5 0.1 84.8 0.05 87.4 1.0 89.0 0.60 88.1 1.3 85.8 1.20

AST 3- gram 89.5 0.1 86.0 0.05 87.7 0.6 * 98.5 * 0.08 * 98.0 * 0.01 * 98.4 * 0.06

AST frequency 94.2 0.2 86.5 0.60 91.1 0.5 79.5 0.60 77.3 1.3 79.0 1.50

5- token * 95.6 * 0.3 86.3 0.10 89.7 0.6 93.8 0.30 * 94.9 * 0.5 91.1 0.40

5- token 3- gram * 98.9 * 0.1 80.5 0.20 * 94.5 * 0.2 75.1 2.80 78.2 3.9 75.5 3.60

5- token frequency * 96.1 * 2.2 70.0 0.20 85.1 1.2 93.2 8.30 34.6 1.4 18.2 0.40

Member 92.2 0.5 86.6 0.30 88.2 0.7 92.0 0.50 * 94.8 * 0.5 90.9 0.50

Member 3- gram * 96.6 * 0.6 88.3 0.30 91.6 0.4 92.4 0.40 91.1 0.4 91.8 0.50

Member frequency 93.6 0.7 84.4 1.50 91.4 0.8 44.0 0.80 7.90 0 22.1 3.20

F I G U R E 6 ROC curve [Colour figure can be viewed at
wileyonlinelibrary.com]

1.000

0.980

0.960

0.940

0.920

0.900

False positive rate (1 - Specificity) (%)

Receiver operating characteristic

T
ru

e
p
o
si

ti
v
e

ra
te

 (
S

en
si

ti
v
it

y
)

(%
)

www.wileyonlinelibrary.com

558 | SONG et al.

and colleagues, a malicious PowerShell script family classi-
fication experiment was conducted, and 85% classification
performance was obtained by 3- fold cross- validation, but
the subject of the experiment is different and thus cannot
be compared. According to Table 7, the experimental re-
sults with the proposed feature optimization methods show
a similar detection rate, but 10 times lower FPRs com-
pared with related studies on malicious PowerShell script
detection. Experimental results show that the features and
optimization methods used are appropriate for detecting
malicious PowerShell scripts.

7 | CONCLUSION AND FUTURE
WORK

The number of cybercrimes is constantly increasing, and
these acts are often difficult to identify via traditional

signature- based detection. As cyberattackers continue to find
ways to bypass detection methods, the amount of research
on this topic has been increasing in recent years. However,
recent studies merely focused on PowerShell obfuscation
techniques and ways to bypass them. In addition, studies on
the use of AI to select appropriate features for learning and to
increase the detection rate are scarce.

Therefore, in this study, we evaluated feature optimi-
zation and related performance for malicious PowerShell
detection using various AI technologies. We utilized com-
binations of the extracted token and sequences of the AST
as learning features for analyzing the PowerShell scripts
statically. There are various types of tokens used in the
PowerShell script, but in this study, we extracted token
types that appear frequently and even tokens that can act
as noise for optimal feature combinations. Using all of
these features, we conducted a comparative experiment.
The combination of features proposed in this paper has the
best detection performance among them. According to the
experimental results, the feature combinations proposed in
this study achieved a detection rate of more than 98% with
both the ML and DL models. Among them, the 5- token
3- gram and AST 3- gram cases showed the best results in
the ML and DL models, respectively. PowerShell can be
downloaded and used in macOS, Linux, and Windows. In
this paper, we proposed an optimized combination of fea-
tures for detecting malicious PowerShell scripts. We ex-
tracted script content and structure information through
static analysis without running scripts to organize feature
combinations. Therefore, regardless of the environment in
which the script runs, if the script is collected, statically
analyzed, and the combination of the features we propose
is extracted, the detection system can use it as a dataset.

PowerShell scripts are primarily used as tools to down-
load additional malware or execute commands to steal the
victim's personal information to the C&C server. Therefore,
it can be very rare that a script contains user personal infor-
mation. In the operation of the detection system, there are
two prerequisites in order to become a situation in which
concerns related to personal information may arise. First, the
personal information must be included inside the PowerShell
script, and second, the information contained in the script
must correspond to the five types of tokens used as features
in this paper. If the user using the detection system is con-
cerned about personal information that may be contained in
the PowerShell script, then only the AST feature information
can be used. In the case of AST, it does not extract the con-
tents of the script, but only extracts the entire structure infor-
mation of the script with a fixed number. Therefore, there is
no problem related to privacy protection, and the detection
performance is good.

Several approaches could be followed to expand upon
this research in the future. First, the feature combinations

T A B L E 6 Results of 5- token case- sensitive experiments

5- token
lowercase

5- token
case- sensitive

RF Recall * 95.6 93.40

FPR * 0.3 0.20

SVM Recall 86.3 74.80

FPR 0.1 0.06

K- NN Recall 89.7 88.50

FPR 0.6 0.90

CNN Recall 93.8 91.50

FPR 0.3 0.40

LSTM Recall * 94.9 90.90

FPR * 0.5 0.60

CNN- LSTM Recall 91.1 90.60

FPR 0.4 0.50

T A B L E 7 Comparison with related work. AUC: Area under the
ROC curve

Comparison ML DL [13] [14]

Data set

Nor 22 261 22 261 60 098 111 593

Mal 4214 4214 6290 5383

Unlabel — — — 368K

Features 5- Token AST Character
frequency

Token
embedding3- gram 3- gram

Algorithm RF LSTM 3- gram CNN- w2v

N- fold 5 5 2 3

Recall 0.989 0.980 0.980 0.944

FPR 1:1000 1:10 000 1:1000 1:1000

AUC 0.995 0.995 0.990 0.994

 | 559SONG et al.

could be optimized further by measuring the importance
of features or utilizing an attention mechanism [36].
Second, as other researchers are interested in PowerShell
script obfuscation technology, an advanced pre- processing
technique could also be applied to analyze and extract the
features of scripts with more complicated obfuscations
than the Base64 decoding technique. Third, the proposed
PowerShell detection system can be divided into two sep-
arate parts: the pre- processing and experimental systems.
Combining them into a single automated system would
help to achieve effective and efficient processing capabil-
ities in terms of the overall system performance. Finally,
the detection model could be hardened to be robust against
adversarial examples. In this paper, we focus on propos-
ing a feature optimization method for detecting malicious
PowerShell scripts. However, recently, research is actively
being conducted to create adversarial samples that make
them look like malware or non- malware using algorithms
such as generative adversarial networks [37]. Therefore, it
is not currently considered, but in the future, research to
implement a robust detection model for evasive PowerShell
scripts can be conducted by generating adversarial samples
for PowerShell scripts and retraining them.

ORCID
Jihyeon Song https://orcid.org/0000-0002-3318-506X

REFERENCES
 1. A. Osipov, Trickbot trojan leveraging a new windows 10 uac by-

pass, Jan. 2020, available at https://blog.morph isec.com/trick bot-
uses- a- new- windo ws- 10- uac- bypass.

 2. A. Katrenko, Malware sandbox evasion: Techniques, principles &
solutions, Mar. 2020, available at https://www.aprio rit.com/dev-
blog/545- sandb ox- evadi ng- malware.

 3. Symantec, The increased use of powershell in attacks, 2016, avail-
able at https://www.syman tec.com/conte nt/dam/syman tec/docs/
secur ity- cente r/white - paper s/incre ased- use- of- power shell - in- attac
ks- 16- en.pdf.

 4. Microsoft, What is powershell?, May 2020, available at https://docs.
micro soft.com/en- us/power shell/ scrip ting/overv iew?view=power
shell - 7.

 5. A. Mellen, Fileless malware 101: Understanding non- malware at-
tacks, Sept. 2019, available at https://www.cyber eason.com/blog/
filel ess- malware.

 6. M. Kim, Supervised learning- based ddos attacks detection: Tuning
hyperparameters, ETRI J. 41 (2019), no. 5, 560– 573.

 7. I. Ko, D. Chambers, and E. Barrett, Unsupervised learning with
hierarchical feature selection for DDos mitigation within the isp
domain, ETRI J. 41 (2019), no. 5, 574– 584.

 8. D. Bohannon and L. Holmes, Revoke- obfuscation: Powershell
obfuscation detection using science, 2017, available at https://
www.black hat.com/docs/us- 17/thurs day/us- 17- Bohan non- Revok
e- Obfus catio n- Power Shell - Obfus catio n- Detec tion- And%20Eva
sion- Using - Scien ce.pdf.

 9. D. Bohannon, Invoke- obfuscation v1.8.2, 2018, available at https://
github.com/danie lboha nnon/Invok e- Obfus cation.

 10. Trendmicro, Emotet uses coronavirus scare in latest campaign, tar-
gets japan, 2020, available at https://www.trend micro.com/vinfo/
us/secur ity/news/cyber crime - and- digit al- threa ts/emote t- uses-
coron aviru s- scare - in- lates t- campa ign- targe ts- japan.

 11. IGLOO security, Monthly security report, 2020, available at http://
www.igloo sec.co.kr/pdf/igloo sec_secur ity_report_202002_en.pdf.

 12. J. H. Song et al., Implementation of a static powershell analysis based
on the cnn- lstm model with token optimizations, in Proc. World Conf.
Inform. Secur. Appl. (Jeju, Rep. of Korea), Aug. 2019, pp. 99– 107.

 13. D. Hendler, S. Kels, and A. Rubin, Detecting malicious power-
shell commands using deep nerual networks, in Proc. Asia Conf.
Comput. Commun. Secur. (Incheon, Rep. of Korea), June 2018, pp.
187– 197.

 14. A. Rubin, S. Kels, and D. Hendler, Amsi- based detection of mali-
cious powershell code using contextual embeddings, available at
arXiv preprint CoRR, 2019 arXiv: 1905.09538v2.

 15. G. Rusak, A. Al- Dujaili, and U. M. O'Reilly, Ast- based deep
learning for detecting malicious powershell, in Proc. Conf.
Comput. Commun. Secur. (Toronto, Canada), Oct. 2018, pp.
2276– 2278.

 16. Microsoft, Pstokentype enum, 2019, available at https://docs.micro
soft.com/en- us/dotne t/api/system.manag ement.autom ation.pstok
entyp e?view=pscor e- 6.2.0.

 17. S. Wheeler, Viewing object structure (get- member), 2017, available
at https://docs.micro soft.com/en- us/power shell/ scrip ting/sampl es/
viewi ng- objec t- struc ture- - get- membe r- ?view=power shell - 7.

 18. P. Singh, Powershell: Tokenization and abstract syntax tree, 2017,
available at https://geeke efy.wordp ress.com/2017/06/07/power
shell - token izati on- and- abstr act- synta x- tree.

 19. Microsoft, System.management.automation.language.namespace,
2019, available at https://docs.micro soft.com/en- us/dotne t/api/sys-
tem.manag ement.autom ation.langu age?view=pscor e- 6.2.0.

 20. T. Yiu, Understanding random forest, 2019, available at https://
towar dsdat ascie nce.com/under stand ing- rando m- fores t- 58381
e0602d2.

 21. R. Gandhi, Support vector machine– introduction to machine learn-
ing algorithms, 2018, available at https://towar dsdat ascie nce.com/
suppo rt- vecto r- machi ne- intro ducti on- to- machi ne- learn ing- algor
ithms - 934a4 44fca47.

 22. O. Harrison, Machine learning basics with the k- nearest neigh-
bors algorithm, 2018, available at https://towar dsdat ascie nce.com/
machi ne- learn ing- basic s- with- the- k- neare st- neigh bors- algor ithm-
6a6e7 1d01761.

 23. T. Y. Kim, Text input binary classification model recipe, 2017,
available at https://tykim os.github.io/2017/08/17/Text_Input_
Binary_Class ifica tion_Model_Recipe.

 24. Y. Kim, Convolutional neural networks for sentence classification,
in Proc. Conf. Empir. Methods Nat. Language Process. (Doha,
Qatar), Oct. 2014, pp. 1746– 1751.

 25. A. Amidi and S. Amidi. Recurrent neural networks cheatsheet,
2019, available at https://stanf ord.edu/sherv ine/teach ing/cs- 230/
cheat sheet - recur rent- neura l- networks.

 26. C. F. Wang, The vanishing gradient problem, Jan. 2019, available
at https://towar dsdat ascie nce.com/the- vanis hing- gradi ent- probl
em- 69bf0 8b15484.

 27. C. Olah, Understanding lstm networks, 2015, available at https://
colah.github.io/posts/ 2015- 08- Under stand ing- LSTMs.

 28. J. Wang et al., Dimensional sentiment analysis using a regional
cnn- lstm model, in Proc. 54th Annu. Meet. Assoc. Comput.
Linguist. (Berlin, Germany), Aug. 2016, pp. 225– 230.

https://orcid.org/0000-0002-3318-506X
https://orcid.org/0000-0002-3318-506X
https://blog.morphisec.com/trickbot-uses-a-new-windows-10-uac-bypass
https://blog.morphisec.com/trickbot-uses-a-new-windows-10-uac-bypass
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://www.cybereason.com/blog/fileless-malware
https://www.cybereason.com/blog/fileless-malware
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And Evasion-Using-Science.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And Evasion-Using-Science.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And Evasion-Using-Science.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And Evasion-Using-Science.pdf
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/emotet-uses-coronavirus-scare-in-latest-campaign-targets-japan
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/emotet-uses-coronavirus-scare-in-latest-campaign-targets-japan
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/emotet-uses-coronavirus-scare-in-latest-campaign-targets-japan
http://www.igloosec.co.kr/pdf/igloosec_security_report_202002_en.pdf
http://www.igloosec.co.kr/pdf/igloosec_security_report_202002_en.pdf
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.pstokentype?view=pscore-6.2.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.pstokentype?view=pscore-6.2.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.pstokentype?view=pscore-6.2.0
https://docs.microsoft.com/en-us/powershell/scripting/samples/viewing-object-structure--get-member-?view=powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/samples/viewing-object-structure--get-member-?view=powershell-7
https://geekeefy.wordpress.com/2017/06/07/powershell-tokenization-and-abstract-syntax-tree
https://geekeefy.wordpress.com/2017/06/07/powershell-tokenization-and-abstract-syntax-tree
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.language?view=pscore-6.2.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.language?view=pscore-6.2.0
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://tykimos.github.io/2017/08/17/Text_Input_Binary_Classification_Model_Recipe
https://tykimos.github.io/2017/08/17/Text_Input_Binary_Classification_Model_Recipe
https://stanford.edu/shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs

560 | SONG et al.

 29. J. White, Pulling back the curtains on encodedcommand power-
shell attacks, 2017, available at https://unit42.paloa ltone tworks.
com/unit4 2- pulli ng- back- the- curta ins- on- encod edcom mand-
power shell - attacks.

 30. ESTsecurity, available at https://www.estse curity.com.
 31. Virustotal, available at https://www.virus total.com.
 32. Powershell corpus, available at https://aka.ms/Power Shell Corpus.
 33. P. Legadec, oletools- python tools to analyze ole and ms office files,

2018, available at https://www.decal age.info/pytho n/oletools.
 34. I. Santos et al., Idea: Opcode- sequence- based malware detection,

in Proc. Int. Symp. Secur. Eng. Softw. Syst. (Pisa, Italy), Feb. 2010,
pp. 35– 43.

 35. S. Narkhede, Understanding auc- roc curve, 2018, available at
https://towar dsdat ascie nce.com/under stand ing- auc- roc- curve
- 68b23 03cc9c5.

 36. A. Vaswani et al., Attention is all you need, in Proc. Adv. Neural
Inform. Process. Syst. (Long Beach, CA, USA), 2017, 5998– 6008.

 37. L. Tong et al., Improving robustness of ML classifiers against re-
alizable evasion attacks using conserved features, in Proc. 28th
USENIX Secur. Symp. (USENIX Security 19), (Santa Clara, CA,
USA), Aug. 2019, pp. 285– 302.

AUTHOR BIOGRAPHIES

Jihyeon Song is a PhD student at the
University of Science and Technology
(UST), Daejeon, Rep. of Korea. She
received her BS degree in information
security engineering from
Soonchunhyang University, Asan,
Rep. of Korea, in 2018, and her MS

degree in Information Security Engineering from UST in
2020. Her research interests include cybersecurity, mal-
ware analysis, and AI- based security.

Jungtae Kim received his BE degree
in information technology from
Charles Sturt University, Australia, in
2001, and his MS degree in network
computing from Monash University,
Australia, in 2004. He joined the
Electronics and Telecommunications

Research Institute (ETRI) in 2004. He is currently work-
ing in the field of network security analysis technologies
as a member of the engineering staff of the Network
Security Research Laboratory. His current research inter-
ests include malware analysis, advanced cyberattacks, and
behavior- based dynamic security analysis technology.

Sunoh Choi Sunoh Choi has been an
assistant professor in the Department
of Computer Engineering at Honam
University since 2019. He received his
BS and MS degrees from Korea
University and his PhD degree from
Purdue University, respectively. He

held employment with the ETRI from 2014 to 2019. His
research interests include data security and AI- based
security.

Jonghyun Kim received his MS and
PhD degrees in computer science from
the University of Oklahoma, USA, in
2000 and 2005, respectively. He was a
researcher with Samsung Electronics
from 1995 to 1997, and a system con-
sultant with Samsung SDS in 2000. He

is currently a principal researcher with the ETRI, Daejeon,
Rep. of Korea, where he is also the project leader of the
Intelligence Security Group. He is involved in standard-
ization activities as an associate rapporteur of Q.4 (cyber-
security) with ITU SG17. His research interests include
information security, cybersecurity, network management,
AI- based Security Information and Event Management,
and AI- based malware detection.

Ikkyun Kim is an assistant vice presi-
dent of the Cyber Security Research
Division at the ETRI, Daejeon, Rep. of
Korea. He joined the ETRI in 1996. He
received his MSCE and PhD degrees
in computer engineering from
Kyungpook National University,

Daegu, Rep. of Korea, in 1996 and 2009, respectively. His
research interests include network security, network foren-
sics, cloud security, and hardware security.

https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks
https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks
https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks
https://www.estsecurity.com
https://www.virustotal.com
https://aka.ms/PowerShellCorpus
https://www.decalage.info/python/oletools
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

