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1  |   INTRODUCTION

Cyberattackers conduct criminal activities for various pur-
poses against individual users, enterprises, and organizations 
worldwide. These cyberattacks are often difficult to identify 
with traditional signature-based detection because attackers 
continually find ways to bypass the detection methods [1,2].

In 2016, the amount of fileless malware, which is mal-
ware that does not exist in file systems, was determined to 
have rapidly increased [3]. Consequently, fileless attacks 
using a PowerShell script have been increasing. PowerShell 
is the scripting language and command-line shell provided by 
Microsoft [4] and is often used for system management and 
automation purposes because it provides powerful scripting 

capabilities. Attackers can also utilize the functional benefits 
of PowerShell scripts, for instance, performing malicious be-
havior and command operations using Windows Management 
Instrumentation or PowerShell, especially when it is installed 
on the victim's system [5].

Malware has been evolving over time, and unknown mal-
ware is difficult to detect as it may be combined with var-
ious types of existing malware or hide its operations from 
the system monitoring tools. Consequently, researchers have 
introduced artificial intelligence (AI) technology to perform 
intelligent detection of evolving malicious behavior [6,7] and 
have conducted studies to increase the performance of the 
model. Although in-depth research on PowerShell and the 
malware that exploits it has been scarce, recent studies [8,9] 
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regarding the analysis of malicious PowerShell scripts have 
been reported. However, these studies are limited in that they 
focused on the PowerShell obfuscation technique only.

The dataset used in this study contains the PowerShell 
script used by the Emotet malware that was distributed in 
december 2018. Emotet malware [10] was first identified in 
2014 and still appears as a variant malware. Recently, it has 
been distributed in the form of a malicious document file at-
tached to a phishing email that seems to convey information 
about COVID-19 infection status. The document file con-
tains a PowerShell script for downloading the Emotet mal-
ware, and various techniques are used to hide the contents of 
these scripts.

According to IGLOO Security [11], attackers have de-
veloped obfuscation methods to minimize the source code 
exposure of their malicious PowerShell scripts and bypass 
antivirus products and other security solutions. Base64-
encoded PowerShell scripts can be detected by behavior-
based security solutions (such as endpoint detection and 
response). However, they are difficult to detect using existing 
pattern-based antivirus products. In addition, in the case of 
PowerShell, they can be more difficult to detect because mul-
tiple obfuscations are easy to implement.

Figure 1A shows a part of the malicious PowerShell script 
code containing the object linking and embedding (OLE) file 
used as the dataset in this paper. In Figure 1A, the capital let-
ters are the Base64-encoded malicious part that the attacker 
intended to make difficult for the analyst to analyze. This 
string can be Base64 decoded to obtain the original code con-
taining the shellcode that performs the malicious behavior. 
Figure 1B is a snippet of that code, and “$hI” is the shellcode 
that establishes a TCP connection to the attacker. Therefore, 
we first need to find and extract the PowerShell script in-
cluded in the OLE file, and then decode the Base64-encoded 

part in the script in order to detect the shellcode that performs 
the malicious behavior. This is a simple code sample that 
makes it possible to detect shellcode with a single Base64 de-
coding, but it can be difficult to detect malicious PowerShell 
scripts that are embedded within document files.

In this paper, we propose a feature optimization method 
to analyze PowerShell scripts statically to then determine 
the optimal feature combinations for AI-based malicious 
PowerShell detection. We evaluated the performance of our 
method by using our training dataset as input to three differ-
ent machine learning (ML) and deep learning (DL) models 
and analyzing the performance of each model. The experi-
mental results show that the random forest (RF) model with 
five token (5-token) 3-grams and the DL models with ab-
stract syntax tree (AST) 3-grams have detection rates of ap-
proximately 98% and false-positive rates (FPRs) of < 0.1%. 
In addition, the malicious script used in the Emotet malware 
described above is extracted, the Base64 is de-obfuscated, 
and the combination of features proposed in this paper is ex-
tracted. As a result of the experiment, it was confirmed that 
Emotet can be properly classified as malicious.

The remainder of this paper is organized as follows. 
Section  2 discusses previous research and related work. 
Section 3 introduces feature optimization techniques for mali-
cious PowerShell script detection with feature extraction pro-
cesses. Section 4 presents the structure of the pre-processing 
system and experimental AI models. Section 5 describes the 
feature extraction process in detail with the training data-
sets used for the evaluations. Then, the results of the perfor-
mance evaluations of the ML and DL models are discussed in 
Section 6. Finally, Section 7 summarizes the proposed work 
with directions for future work.

2  |   RELATED WORK

Prior to this study, we conducted a DL-based malicious 
PowerShell detection experiment with combinations of 
selected tokens [12]. Previously, 5-token types of the 
PowerShell script were selected to create a token combina-
tion for feature extraction. In our previous study, we utilized 
the 22  261 normal and 4150 malicious PowerShell scripts 
as a test dataset. Then, we evaluated the performance using 
5-fold cross-validation with a convolutional neural network 
(CNN), long short-term memory (LSTM), and CNN-LSTM 
combined models. The experimental results of the three 
proposed models had an average detection rate of approxi-
mately 93% and an FPR of approximately 0.4%. However, 
we only conducted a validation experiment with a limited set 
of 4-tokens and did not conduct experiments with the other 
features for performance comparison. Therefore, our present 
study attempts to overcome the limitations of the previous 
study.

F I G U R E  1   Malicious PowerShell script example: (A) 
PowerShell script containing the OLE file and (B) de-obfuscated 
shellcode [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Hendler and others [13] used a natural language process-
ing and character-level CNN-based detector with 60 098 nor-
mal and 6290 malicious PowerShell commands as datasets to 
detect malicious PowerShell commands. After analyzing the 
PowerShell commands with the deduplication process, they 
utilized a character set with a frequency of more than 1.4% 
of overall commands for the training feature information to 
exclude rare characters. In total, 62-length vector arrays were 
applied to the detector by including case-sensitive bit charac-
ters. They evaluated the performance using a variety of de-
tectors, and as a result of 2-fold cross-validation, the 3-gram 
detector obtained a true-positive rate (TPR) of 0.98 when the 
FPR was at 1:1000. However, the limitation of the study was 
its narrow focus only on PowerShell commands without con-
sidering the entire script itself.

Rubin and others [14] proposed a contextual embedding 
method and DL to improve the overall performance. They 
attempted to overcome the lack of labeled data by learning 
the contextual embedding from the unlabeled data. With 
contextual embedding, words with similar meanings can be 
represented in a vector of embedding space; thus, malicious 
scripts can be detected with similarity matching. The authors 
performed training and evaluation by utilizing data collected 
from the Microsoft Antimalware Scan Interface (AMSI), 
which includes 111 593 normal and 5383 malicious instances 
of PowerShell code. They also included an unlabeled dataset 
of approximately 370 000 unlabeled PowerShell scripts and 
modules for the training data to simulate a realistic dataset. 
In this study, they conducted an experiment with a total of 
12 models and performed 3-fold cross-validation. At an FPR 
level of 1:1000, the TPR of the CNN-W2V model was ap-
proximately 0.94. However, the contextual embedding was 
performed with no distinction between normal and malicious 
scripts, which may reduce the overall accuracy, instead of 
using a labeled script as training data.

Rusak and others [15] used the depth and node count infor-
mation of the AST nodes to classify a malicious PowerShell 
script based on its family type information. They utilized 4079 
malicious PowerShell scripts as a dataset. By recursively ex-
ploring the PowerShell script and extracting the depth and num-
ber of AST nodes, the hyperparameter of an RF classifier was 
optimized at the maximum node depth. Then, the PowerShell 
scripts were labeled according to each type of malware family 
by using a 3-fold cross-validation test with the RF classifier. 
In their experiment, they achieved 85% classification accu-
racy. In addition, the authors built an embedding matrix of the 
malicious PowerShell script according to its AST node types 
and performed experiments to show the relationship between 
similar embedding information. However, the classification of 
malicious types was limited to using the malicious PowerShell 
scripts only; consequently, the results were narrow in focus. In 
addition, although information about the depth and number of 
AST nodes facilitates the identification of the entire structure 

of the scripts, the distinction between a normal and malicious 
PowerShell script may not be clear.

To overcome the limitations of previous studies, we ana-
lyzed the entire content and data structure of the PowerShell 
script, such as the AST node types (AST classes), which 
helps to consider various feature combinations from the de-
tailed composition of the script content block and improve 
the detection accuracy.

3  |   PROPOSED FEATURE 
OPTIMIZATION METHOD

This section describes the proposed method for PowerShell 
script analysis and the feature selection process of combining 
various features for performance enhancement.

3.1  |  Pre-processing of PowerShell scripts

3.1.1  |  Token-based keyword extraction

PowerShell scripts can be parsed by Microsoft-defined token 
units using PSParser Tokenize [16]. Microsoft classifies 
the tokens into 20 categories. Using the entire PowerShell 
script as the dataset, the frequency information of all related 
token types was extracted except for the tokens correspond-
ing to operators, newlines, and parentheses. This dataset 
contains 22 261 normal scripts and 4214 malicious scripts, 
and the sources and types of script samples are detailed in 
Section 5.1. The pre-processing of the PowerShell script in 
this work mainly focused on the six types of tokens indicated 
by asterisks in Table 1. The Number and String tokens are 

T A B L E  1   Token types: frequency and description

Token types Count Description

*Variable 1 757 455 Variable after the “$” 
character

Number 1 357 818 All numbers in the 
PowerShell scripts

String 770 950 All strings in the 
PowerShell scripts

* Member 762 072 Object properties and 
methods

* Command 577 446 Commands for the action 
to perform

* CommandParameter 474 777 Parameters used with 
Command

* Keyword 425 713 Condition, branch 
statement, etc.

* CommandArgument 367 884 Arguments used with 
Command
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variables, and consequently, they are excluded to reduce the 
noise in the identification process to distinguish between nor-
mal and malicious scripts.

The token types for all types of behavior performed 
in PowerShell mostly consist of Command (Com), 
CommandParameter (Com_Param), and CommandArgument 
(Com_Arg), which correspond to execution commands with 
related variable and argument values, respectively. By ana-
lyzing these 3-token types, it is possible to determine the at-
tacker's intention from the PowerShell script.

Keyword tokens include all tokens that are classified as 
keywords, including conditional or branch statements, which 
can be analyzed together with other tokens, such as Com to-
kens. For example, Keyword and Com tokens can be used 
together in the case of a command execution in PowerShell, 
especially when an attacker aims to perform the desired mali-
cious behavior when a certain condition is met.

The Variable tokens contain all the variables created in the 
script. Variable names can be easily modified according to the 
user's needs. The number of variables can be very large when 
extracting Variable tokens because all of them are counted as 
different variables. However, this occurrence could be com-
mon when an attacker writes a script that references another 
script or when a variable name is used to clarify what a func-
tion is doing. In addition, when checking the condition of a 
specific variable in a conditional or branch statement, which 
frequently occurs in the analysis of a Keyword token, the syn-
tax can be accurately assessed by checking a Variable token 
that appears later. Thus, it is logical to analyze the Keyword 
and Variable tokens together, regardless of their number.

According to Microsoft [17], objects play an important 
role in PowerShell; in particular, Member tokens represent 
the properties and methods of PowerShell objects. Although 
the features of this token type differ slightly from those of the 
other five types considered in this study, the Member token 
type is a crucial feature that represents the characteristics of 
PowerShell objects.

With the proposed six token types, the final issue to con-
sider is that the PowerShell script is case insensitive when 
running commands. Certain malicious PowerShell scripts 
use a mixed case for script obfuscation. This characteristic 
makes it difficult for the user to read the contents, and the ac-
tual behavior is the same as when the script is represented in 
lowercase letters. Therefore, when analyzing the PowerShell 
scripts, the case-sensitivity issues of the extracted tokens 
can be neglected while processing the feature extraction and 
experiments.

3.1.2  |  AST-based keyword extraction

The second method of parsing a PowerShell script is based 
on AST methods [18]. Although analysis using the Tokenize 

method can identify all the contents and lexical units of the 
script, analysis using the AST can identify the overall struc-
ture of the script by assessing its block units.

Because normal (or benign) and malicious PowerShell 
scripts behave differently, their roles and overall structures 
differ. Therefore, we extracted the AST structure and selected 
it as a feature to distinguish between normal and malicious 
contents. Furthermore, the order of script construction can 
be analyzed with an n-grams approach to utilize the struc-
tural features more effectively. In this study, we selected the 
commonly used 3-gram approach to analyze three consecu-
tive pieces of structural information together. As Microsoft 
has defined 108 AST classes [19], we analyzed all of the 
PowerShell scripts that were used as datasets and extracted 
all 108 classes accordingly. Figure  2 shows an example of 
an AST structure obtained by parsing a sample PowerShell 
script.

3.2  |  Feature optimization

As explained in the previous section, the six proposed token 
types were used as the selected set of features in this study. We 
suggest three groups of related token types, as summarized in 
Table  2. For Group 1, the token types Com, Com_Param, 
and Com_Arg (Com, etc.) were selected, as they are related 
to each other while executing the commands. The Keyword 
and Variable tokens in Group 2 were selected, as they are 
often deployed together in conditional or branch statements 
of PowerShell. Lastly, the Member token is the only token 
type in Group 3, as it is a crucial component that represents 
the characteristics of an object, unlike other tokens.

Although the token types within the groups listed in 
Table 2 are interrelated, they may not be perfect combina-
tions of token types for analyzing and detecting malicious 
PowerShell scripts. Groups 1 and 2 are not relevant in all 

F I G U R E  2   AST structure example

ScriptBlockAst

NamedBlockAst

ParameterAst

VariableExpressionAst

ParamBlockAst

AssignmentStatementAst

VariableExpressionAst CommandExpressionAst

VariableExpressionAst

T A B L E  2   Related groups of token types

Group Token types

1 Command, CommandParameter, CommandArgument

2 Keyword, Variable

3 Member
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situations, but can be used together to execute the desired 
commands under a certain condition. A combination such as 
this can be found especially in a malicious script with the aim 
of downloading malware from an attacker server (command) 
when the victim's PC is not a virtual machine (condition).

Consequently, five types of tokens exist in the combina-
tions in Groups 1 and 2 that help to more accurately classify 
and detect malicious PowerShell scripts. The Members token 
in Group 3, as explained earlier, may not be significantly re-
lated to the other types of tokens. Therefore, we used a single 
Member token as a secondary feature instead of including it 
with the other token types. A simple experiment was con-
ducted to determine the most appropriate combinations of the 
proposed token types. The results are provided in Table 3.

In this experiment, 1000 normal and malicious PowerShell 
script samples were randomly selected and used as a dataset 
to evaluate the effectiveness of the selected token combina-
tions. Among them, 80% of the data were used for training, 
and the remaining 20% were used for testing purposes. The 
performance of each was measured with the CNN, LSTM, 
and CNN-LSTM combined models. Table  3 lists the aver-
ages of the experimental results based on the three models. 
The results show that the approach based on 5-tokens has the 
best performance overall, with a recall of 90.6% and an FPR 
of 4%.

4  |   STRUCTURE OF THE 
DETECTION SYSTEM

Section 4 presents the overall structure of the proposed AI-
based malicious PowerShell detection system used in this 
study. This system consists of data pre-processing and ex-
perimental system parts for malicious PowerShell detection 
and classification, as shown in Figure 3.

4.1  |  Pre-processing system

The data pre-processing part of the detection system performs 
script analysis and generates training data. The PowerShell 
script is initially checked for the obfuscation methods used and 
then de-obfuscated to convert into plaintext script for static 
analysis. The de-obfuscated script is then further analyzed 
using the tokenize and AST methods to extract the different 
types of tokens and AST classes accordingly to generate the 
training data for the experimental AI models. Detailed descrip-
tions of the pre-processing and procedures for the training data 
generation are provided in Sections 5.2 and 5.3, respectively.

4.2  |  Experimental models

The experimental models employed in this study include three 
ML and three DL models. For the ML models, RF, support-
vector machine (SVM), and K-nearest neighbor (K-NN) are 
used, and for the DL models, the CNN, LSTM, and CNN-
LSTM models are used. The ML model was built using the 
Jupyter virtual environment in a Windows environment with 
the sklearn and Keras packages. The DL model was built using 
Keras, which is an open-source neural network library written 
in Python, on a Ubuntu server with a GPU (GeForceGTX 1080 
Ti). For comparison with the results of the DL experiment, the 
length of the maximum sequence was set to 800 for both ML 
and DL. When the sequence length was insufficient, zero pad-
ding was added. The number of epochs and batch size were set 
to 1 for both ML and DL. The layer structures of the three DL 
models used in the experiments are depicted in Figure 4.

4.2.1  |  RF

The RF model [20] is mainly used for classification and detec-
tion, and is an ensemble technique for learning multiple deci-
sion trees. The decision tree may have limitations for general 
use in certain fields because its overall performance tends to 
have a strong dependency on the given datasets. Therefore, RF 
was selected to overcome these problems. The RF may not be 
affected much by noise because the prediction of the decision 
tree is uncorrelated. Therefore, the generalization performance 
of RF is superior to that of the approach based on a decision tree.

4.2.2  |  SVM

The SVM [21] model, also known as a support-vector network, 
is generally utilized for pattern recognition and data analysis for 
classification and regression. Based on the two types of data-
sets the SVM is provided with, the algorithm is optimized to 
determine the best matching type between two categories given 

T A B L E  3   Experimental results for token combinations

Token Group 1
Group 1 and 
keyword

Group 1 and 
variable 5-tokens

Recall 90.0 90.3 84.0 90.6

FPR 4.3 5.0 4.3 4.0

F I G U R E  3   Structure of the detection system
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unknown data. The SVM aims to maximize the margin, which 
is the distance between hyperplanes, for more accurate catego-
rization of the different data types or separation of the datasets.

4.2.3  |  K-NN

The K-NN algorithm [22] is a model designed for pat-
tern recognition, especially for data classification and 

regression. The K-NN model with the previously labeled 
data helps to identify a similarity measure with the shortest 
distance from the k neighbor data when new data are avail-
able. The K-NN algorithm utilizes the Euclidean distance 
measurement for distance calculations. The disadvantage of 
the algorithm is the overall processing delay for data clas-
sification, especially when a large training dataset is used.

4.2.4  |  CNN

The CNN model [23,24] is generally deployed to analyze and 
classify image, video, and text data, and is the most widely 
used algorithm for DL. CNN recognizes special patterns 
in the information consisting of input images or text, and 
extracts a meaningful feature set automatically. The fully 
connected neural networks are connected to all the neurons 
in adjacent layers. This neural network treats the input data 
as neurons of the same dimension and cannot use the spa-
tial information of the data. Unlike a fully connected neural 
network, a CNN can utilize spatial information because it 
can maintain and process the shape information of the given 
data. In addition, the overall learning process requires less 
time than the recurrent neural network (RNN) model, which 
is described in the following section. The layered structure 
of the CNN model used in this study is shown in Figure 4A.

4.2.5  |  LSTM

The RNN model [25] is specifically utilized to process se-
quential data types such as voice- and video-recorded format. 
The neural network does not support buffering of informa-
tion obtained in the previous DL stage until the next stage. 
However, the RNN learns new data based on the information 
from the previous step, and this process is repeated for all 
new data. However, the RNN model experiences the vanish-
ing gradient problem [26] when the previous step, in which 
the information was obtained, is far from the current step in 
which the information is used. The LSTM [27] model is de-
signed to overcome these problems with a structural design 
that adds the cell state to the hidden state of the RNN, and 
consequently, it can maintain the intended information for a 
long time. The cell state of the LSTM can determine whether 
information is reflected in the data using an input, output, 
or forget gate. The layered structure of the LSTM model is 
shown in Figure 4B.

4.2.6  |  CNN-LSTM

The CNN-LSTM model [28], as the name implies, com-
bines the CNN and LSTM approaches. The combined model 

F I G U R E  4   DL models: (A) CNN model, (B) LSTM model, 
and (C) CNN-LSTM model [Colour figure can be viewed at 
wileyonlinelibrary.com]
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utilizes the spatial information of the CNN and the tempo-
ral information of the LSTM together. Consequently, this 
approach has more flexibility for application in various DL 
fields than other models. In addition, the CNN-LSTM model 
sequentially integrates the local features extracted by the 
CNN into the LSTM. If only the CNN model was used to 
process the input data, it might not be able to identify the 
dependencies between the large datasets for a long period. 
Therefore, the problems associated with previous models 
can be solved by using the CNN and LSTM together. The 
layer configuration of the CNN-LSTM model can be found 
in Figure 4C.

5  |   EXPERIMENTAL SETUP

5.1  |  Datasets

In the experiment, a total of 26 475 PowerShell scripts were 
used, including 22 261 normal and 4214 malicious scripts. 
The PowerShell script samples contained approximately 
3000 publicly available Base64-encoded scripts [29] and 
nearly 400 OLE files containing malicious PowerShell scripts 
provided by ESTsecurity [30]. The remainder of the dataset 
consists of a script that distinguishes between normal and 
malicious contents using VirusTotal [31] among the publicly 
available unlabeled PowerShell scripts [32]. The script labels 
were classified as malicious when a malicious PowerShell 
script was detected in 5% or more of the detection engines 
registered in VirusTotal.

5.2  |  Pre-processing of datasets

The data used in the experiment can be broadly divided into 
Base64-encoded scripts or OLE files and regular scripts. 
Among them, the Base64-encoded scripts and OLE object 
files do not support static analysis as they are encoded; there-
fore, an additional pre-processing step is required before the 
proposed feature extraction process. We initially decoded the 
Base64-encoded PowerShell scripts and the analyzed OLE 
object files to find and extract the target PowerShell scripts 
and related features, as described in Section 3.1. Detailed in-
formation on the pre-processing is as follows.

5.2.1  |  Analysis of the OLE files

The OLE allows a script to support embedding and linking 
to documents or objects. The provided OLE files contained 
malicious PowerShell scripts, and therefore, it was neces-
sary to extract the embedded PowerShell scripts to utilize 
these files in the dataset. The Python-oletools package [33] 

is primarily used to analyze OLE and MS Office files for 
malware and debugging purposes. Several modules were 
provided as a software package for file analysis. For exam-
ple, the MacroRaptor module enables the detection of mali-
cious visual basic for applications (VBA) macros, and the 
olevba module provides a means of searching and extracting 
the VBA macro source code from the OLE and MS Office 
documents. In this study, we utilized the olevba module to 
find the malicious PowerShell scripts included in the OLE 
files to extract the embedded scripts.

5.2.2  |  Simple de-obfuscation

An attacker can use a PowerShell script to perform any ma-
licious behavior and even employ an obfuscation technique 
to avoid detection. In this study, because the features were 
extracted after static analysis without actually executing the 
script, the feature extraction would be difficult if the script 
was obfuscated. Therefore, a simple de-obfuscation process 
was performed before feature extraction. The PowerShell 
script can be de-obfuscated easily using Base64 decod-
ing once or twice. In addition, a sophisticated obfuscation 
method utilized in the PowerShell scripts can also be de-
obfuscated using publicly available de-obfuscation tools. 
The PowerShell options used to Base64 encode the scripts 
are “-enc,” “-EncodedCommand,” “-ec,” and so on [29]. The 
pre-processing system searches for the PowerShell script en-
coded by the attacker using various options, after which the 
system decodes the script to obtain a plaintext script using the 
Base64 decoding module (b64decode).

5.3  |  Feature extraction

After the de-obfuscation process, we can extract the feature in-
formation from the pre-processed plaintext PowerShell scripts. 
As explained in Section 3, we extracted the lexical unit token 
combinations and structural unit block of the script as feature 
information. At this time, the extracted feature strings were 
replaced by the unique corresponding IDs, and consequently, 
the same ID was assigned for each string within the script 
when the same string appeared in multiple scripts. In the case 
of the AST classes, 108 fixed classes can be extracted; thus, it 
was not necessary to convert them into lowercase. However, 
when using tokens as a feature, only the types of tokens to be 
extracted are specified and the total number is not fixed. As 
tokens (vocabulary) can have the same function but are case 
sensitive, all extracted tokens were converted into lowercase 
strings for deduplication purposes. The sequence information 
of the extracted tokens and AST classes could also be used 
as additional feature information by obtaining frequencies or 
reprocessing the sequence into n-gram sequences.
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5.3.1  |  Frequency

In malware analysis research, the frequency information of 
the malware opcodes is often extracted and used as training 
data [34]. In this study, because all six types of token and 
AST classes were used as the feature set, the frequency infor-
mation about the proposed feature data, provided in Tables 1 
and 2, could also be extracted and evaluated.

Because the total number of features extracted from the 
scripts was large, it was necessary to limit this number. Hence, 
we conducted a simple experiment by randomly assigning the 
top most frequently extracted token numbers to evaluate the 
overall performance of selection of the frequency informa-
tion as a feature set. Among the top 100 to 5000 most fre-
quently extracted feature sets, satisfactory performance was 
measured at the top frequency numbers of 500 and 1000. The 
500 most frequently extracted tokens took less pre-processing 
time than the 1000 most frequently extracted tokens, but the 
performance was similar. Therefore, we extracted the top 500 
frequently extracted tokens, and the corresponding results are 
listed in Table 4. In this experiment, the dataset we used was 
identical to that described in Section 5.1, and we measured 
the performance using the CNN model with 5-fold cross-
validation tests using 5-token frequency without the Member 
token as learning data.

5.3.2  |  3-grams

As explained in Section  3.1.2, an analyst can identify the 
overall structure of the scripts by analyzing multiple AST 
structures together. Similarly, grouping-related token types 
can help researchers to determine the organization of the 
script content. In this study, a commonly used 3-gram se-
quence was utilized for the token and AST analysis; specifi-
cally, three consecutive pieces of structural information were 
analyzed together. If the extracted token and AST sequences 
were shorter than a 3-gram, zero padding was added to con-
struct a complete 3-gram sequence for building the learning 
data.

5.4  |  Learning the data configuration

In this study, the proposed feature optimization techniques 
with the six tokens and AST were utilized with the sequence, 
frequency, and 3-gram sequences to produce the learning 

data. Although several different types of features were used, 
the main objective was to arrange the extracted features in 
sequence for the learning data. The structures of the training 
data files applied in the ML and DL models are shown in 
Figure 5, which depicts part of a training data file consist-
ing of a 5-token sequence extracted from the same normal 
PowerShell script.

The first column of the ML training data file in Figure 5A 
is labeled to distinguish benign (b) from malicious (m). The 
second column contains the corresponding sequence number 
of the extracted feature data. Therefore, Figure  5A can be 
interpreted as a list of feature sequences extracted from the 
normal PowerShell scripts.

On the other hand, the first column of the DL training data 
file in Figure 5B represents the file names of the PowerShell 
scripts, followed by the number of feature data extracted in 
the second column. The third column is a label (0 or 1) that 
can be used to distinguish a script as benign (0) or malicious 
(1), and, finally, the sequence of extracted feature data is rep-
resented in the remaining columns. For instance, Figure 5B 
shows a set of feature sequence data extracted from five nor-
mal PowerShell scripts.

6  |   PERFORMANCE EVALUATION

This section presents the performance evaluation results ob-
tained by applying the training data files to the ML and DL 
models. A total of 10 features were used in this study. Among 
them, nine of the features are mainly related to simple se-
quence information of token and AST, as listed in Table 5. 
We also experimented with the case-sensitive issue for the 
5-token that were extracted to prove that it is meaningful to 
convert the token to lowercase when it is extracted.

In all six models, 5-fold cross-validation tests were per-
formed, and the results of the detection and FPRs were 
rounded to two decimal places. In Table  5 and 6 , the top 
results of the ML and DL experiments are marked with an 
asterisk.

T A B L E  4   Experimental results for 5-token frequency

Frequency 100 200 500 1000 5000

Recall 62.2 69.2 93.2 92.3 0.7

FPR 4.1 3.3 8.3 7.3 0.02 F I G U R E  5   Data configuration: (A) ML data and (B) DL data

Normal1 28 0 1 2 3 1 1

Normal2 19 0 26 26 12 27 28

Normal3 7 0 1 1 29 30 29

Normal4 4 0 1 3 45 1

Normal5 35 0 12 12 12 46 47

(B)

Benign1 1 2 3 1 1 4 5

Benign2 26 26 12 27 28 29 26

Benign3 1 1 29 30 29 12 31

Benign4 1 3 45 1

Benign5 12 12 12 46 47 48 49

(A)
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In the ML case, the best feature combination was the 5-
token 3-gram case with the RF model, which shows a signifi-
cantly higher detection rate and lower FPR than the others. 
Second, the 5-token frequency and 3-gram of Member tokens 
showed a detection rate of approximately 96% with a higher 
FPR. Third, the 5-token sequence also shows a detection rate 
of 95.6% and a FPR of 0.3%. Overall, the overall perfor-
mance of the 5-token feature combinations in the ML models 
is satisfactory. Although the best results were obtained with 
the 5-token sequence cases in the ML, the AST 3-gram case 
had the highest detection rate of 98.5% for the DL. In partic-
ular, when the AST 3-gram was used, the detection rate was 
greater than 98% and the FPR was less than 0.1% in all of 
the DL models. The next highest detection rate was obtained 
using the 5-token and Member token sequences in the DL 
case. Direct comparison was difficult because of the different 
experimental models and features that were used. The results 

of the receiver operating characteristic (ROC) curve experi-
ments [35] are summarized in Figure 6.

Overall, the detection rates in the ML experiments were 
higher than those in the DL experiment, but the FPR appears 
to be significantly lower in the DL case. As the trade-off be-
tween sensitivity and specificity among different experiments 
can be represented by the area under the ROC curve, which 
is equivalent to a measure of accuracy, the AST 3-gram case 
with the DL and 5-token 3-gram case with the ML models 
achieved the highest detection accuracy.

When AI technology is used for malware detection, a high 
detection rate is the main objective, but a low FPR is also 
very important. Therefore, the DL with AST 3-gram as a fea-
ture can be seen as the most effective feature optimization 
method for malicious PowerShell script detection.

As mentioned in Section 5.3, token extraction requires the 
extracted characters to be converted to lowercase. When writ-
ing scripts, there may be cases in which users intentionally 
mix both uppercase and lowercase characters. However, as 
indicated in Table 6, the case-sensitivity issues of PowerShell 
scripts can be neglected at the functional system level. To 
prove this proposal, we prepared a case-sensitive 5-token se-
quence and a sequence in which all tokens were converted to 
lowercase to conduct the experiment. In the same way as the 
previous experiment, we performed 5-fold cross-validation 
on six models and compared the results. We argue that the 
performance is superior for lowercase 5-token than when the 
token is case-sensitive. Therefore, we propose converting all 
extracted feature information into lowercase characters to re-
duce the number of duplicated tokens and to optimize the 
features for detecting malicious scripts based on similar ma-
licious behavior.

Table  7 compares the studies surveyed in Section  2. 
Direct comparison of the experimental results is difficult 
because the datasets, detection models, extracted features, 
and experimental methods used in each study are different, 
but they can be indirectly compared based on the detection 
performance presented in the study. In the study of Rusak 

T A B L E  5   Experimental results

Feature

RF SVM K-NN CNN LSTM CNN-LSTM

Recall FPR Recall FPR Recall FPR Recall FPR Recall FPR Recall FPR

AST 88.5 0.1 84.8 0.05 87.4 1.0 89.0 0.60 88.1 1.3 85.8 1.20

AST 3-gram 89.5 0.1 86.0 0.05 87.7 0.6 * 98.5 * 0.08 * 98.0 * 0.01 * 98.4 * 0.06

AST frequency 94.2 0.2 86.5 0.60 91.1 0.5 79.5 0.60 77.3 1.3 79.0 1.50

5-token * 95.6 * 0.3 86.3 0.10 89.7 0.6 93.8 0.30 * 94.9 * 0.5 91.1 0.40

5-token 3-gram * 98.9 * 0.1 80.5 0.20 * 94.5 * 0.2 75.1 2.80 78.2 3.9 75.5 3.60

5-token frequency * 96.1 * 2.2 70.0 0.20 85.1 1.2 93.2 8.30 34.6 1.4 18.2 0.40

Member 92.2 0.5 86.6 0.30 88.2 0.7 92.0 0.50 * 94.8 * 0.5 90.9 0.50

Member 3-gram * 96.6 * 0.6 88.3 0.30 91.6 0.4 92.4 0.40 91.1 0.4 91.8 0.50

Member frequency 93.6 0.7 84.4 1.50 91.4 0.8 44.0 0.80 7.90 0 22.1 3.20

F I G U R E  6   ROC curve [Colour figure can be viewed at 
wileyonlinelibrary.com]
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and colleagues, a malicious PowerShell script family classi-
fication experiment was conducted, and 85% classification 
performance was obtained by 3-fold cross-validation, but 
the subject of the experiment is different and thus cannot 
be compared. According to Table 7, the experimental re-
sults with the proposed feature optimization methods show 
a similar detection rate, but 10 times lower FPRs com-
pared with related studies on malicious PowerShell script 
detection. Experimental results show that the features and 
optimization methods used are appropriate for detecting 
malicious PowerShell scripts.

7  |   CONCLUSION AND FUTURE 
WORK

The number of cybercrimes is constantly increasing, and 
these acts are often difficult to identify via traditional 

signature-based detection. As cyberattackers continue to find 
ways to bypass detection methods, the amount of research 
on this topic has been increasing in recent years. However, 
recent studies merely focused on PowerShell obfuscation 
techniques and ways to bypass them. In addition, studies on 
the use of AI to select appropriate features for learning and to 
increase the detection rate are scarce.

Therefore, in this study, we evaluated feature optimi-
zation and related performance for malicious PowerShell 
detection using various AI technologies. We utilized com-
binations of the extracted token and sequences of the AST 
as learning features for analyzing the PowerShell scripts 
statically. There are various types of tokens used in the 
PowerShell script, but in this study, we extracted token 
types that appear frequently and even tokens that can act 
as noise for optimal feature combinations. Using all of 
these features, we conducted a comparative experiment. 
The combination of features proposed in this paper has the 
best detection performance among them. According to the 
experimental results, the feature combinations proposed in 
this study achieved a detection rate of more than 98% with 
both the ML and DL models. Among them, the 5-token 
3-gram and AST 3-gram cases showed the best results in 
the ML and DL models, respectively. PowerShell can be 
downloaded and used in macOS, Linux, and Windows. In 
this paper, we proposed an optimized combination of fea-
tures for detecting malicious PowerShell scripts. We ex-
tracted script content and structure information through 
static analysis without running scripts to organize feature 
combinations. Therefore, regardless of the environment in 
which the script runs, if the script is collected, statically 
analyzed, and the combination of the features we propose 
is extracted, the detection system can use it as a dataset.

PowerShell scripts are primarily used as tools to down-
load additional malware or execute commands to steal the 
victim's personal information to the C&C server. Therefore, 
it can be very rare that a script contains user personal infor-
mation. In the operation of the detection system, there are 
two prerequisites in order to become a situation in which 
concerns related to personal information may arise. First, the 
personal information must be included inside the PowerShell 
script, and second, the information contained in the script 
must correspond to the five types of tokens used as features 
in this paper. If the user using the detection system is con-
cerned about personal information that may be contained in 
the PowerShell script, then only the AST feature information 
can be used. In the case of AST, it does not extract the con-
tents of the script, but only extracts the entire structure infor-
mation of the script with a fixed number. Therefore, there is 
no problem related to privacy protection, and the detection 
performance is good.

Several approaches could be followed to expand upon 
this research in the future. First, the feature combinations 

T A B L E  6   Results of 5-token case-sensitive experiments

5-token 
lowercase

5-token 
case-sensitive

RF Recall * 95.6 93.40

FPR * 0.3 0.20

SVM Recall 86.3 74.80

FPR 0.1 0.06

K-NN Recall 89.7 88.50

FPR 0.6 0.90

CNN Recall 93.8 91.50

FPR 0.3 0.40

LSTM Recall * 94.9 90.90

FPR * 0.5 0.60

CNN-LSTM Recall 91.1 90.60

FPR 0.4 0.50

T A B L E  7   Comparison with related work. AUC: Area under the 
ROC curve

Comparison ML DL [13] [14]

Data set

Nor 22 261 22 261 60 098 111 593

Mal 4214 4214 6290 5383

Unlabel — — — 368K

Features 5-Token AST Character 
frequency

Token 
embedding3-gram 3-gram

Algorithm RF LSTM 3-gram CNN-w2v

N-fold 5 5 2 3

Recall 0.989 0.980 0.980 0.944

FPR 1:1000 1:10 000 1:1000 1:1000

AUC 0.995 0.995 0.990 0.994
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could be optimized further by measuring the importance 
of features or utilizing an attention mechanism [36]. 
Second, as other researchers are interested in PowerShell 
script obfuscation technology, an advanced pre-processing 
technique could also be applied to analyze and extract the 
features of scripts with more complicated obfuscations 
than the Base64 decoding technique. Third, the proposed 
PowerShell detection system can be divided into two sep-
arate parts: the pre-processing and experimental systems. 
Combining them into a single automated system would 
help to achieve effective and efficient processing capabil-
ities in terms of the overall system performance. Finally, 
the detection model could be hardened to be robust against 
adversarial examples. In this paper, we focus on propos-
ing a feature optimization method for detecting malicious 
PowerShell scripts. However, recently, research is actively 
being conducted to create adversarial samples that make 
them look like malware or non-malware using algorithms 
such as generative adversarial networks [37]. Therefore, it 
is not currently considered, but in the future, research to 
implement a robust detection model for evasive PowerShell 
scripts can be conducted by generating adversarial samples 
for PowerShell scripts and retraining them.
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