IoT(Internet of Things) 기기가 다양한 산업 분야에 활용되면서, 보안과 유지 보수를 위한 관리의 중요성이 커지고 있다. 편리한 IoT 기기 관리를 위해 무선 네트워크를 통한 펌웨어 업데이트 기술인 FOTA(Firmware Over The Air)가 적용되어 있지만, 컴퓨팅 파워가 제한된 경량 IoT 기기 특성상 취약점 탐지를 수행하기 어렵다. 본 연구에서는 IoT 기기들이 퍼징 테스트 케이스를 분할하여 협력적으로 퍼징하고, 노드 간의 퍼징 결과가 다르면 재검증을 수행하는 협력적 퍼징 기법을 제안한다. 실험 결과에 따르면, 중복되는 테스트 케이스를 2 개나 3 개 퍼징하는 협력적 퍼징 기법은 종래 방식 대비 연산량을 최소 약 16%, 최대 약 48% 줄였다. 또한, 종래 퍼징 기법 대비 취약점 탐지 성공률(Success rate of vulnerability detection)을 최소 약 3 배, 최대 약 3.4 배 개선시켰다.
Soybean (Glycine max L.) is one of the most widely planted and used legumes in the world, being used for food, animal feed products, and industrial production. The soybean mosaic virus (SMV) is the most prevalent virus infecting soybean plants. This study developed a diagnostic method for the rapid and sensitive detection of SMV using a reverse transcription-recombinase polymerase amplification (RT-RPA) technique combined with a lateral flow strip (LFS). The RT-RPA and RT-RPA-LFS conditions to detect the SMV were optimized using the selected primer set that amplified part of the VPg protein gene. The optimized reaction temperature for the RT-RPA primer and RT-RPA-LFS primer used in this study was 38℃ for both, and the minimum reaction time was 10 min and 5 min, respectively. The RT-RPA-LFS was as sensitive as RT-PCR to detect SMV with 10 pg/µl of total RNA. The reliability of the developed RT-RPA-LFS assay was evaluated using leaves collected from soybean fields. The RT-RPA-LFS diagnostic method developed in this study will be useful as a diagnostic method that can quickly and precisely detect SMV in the epidemiological investigation of SMV, in the selection process of SMV-resistant varieties, on local farms with limited resources.
Alessia Chini;Michele Manigrasso;Grazia Cantore;Rosa Maione;Marco Milone;Francesco Maione;Giovanni Domenico De Palma
Clinical Endoscopy
/
v.55
no.2
/
pp.183-190
/
2022
Colorectal cancer is an important cause of morbidity and mortality worldwide. Optical colonoscopy (OC) is widely accepted as the reference standard for the screening of colorectal polyps and cancers, and computed tomography colonography (CTC) is a valid alternative to OC. The purpose of this review was to assess the diagnostic accuracy of OC and CTC for colorectal lesions. A literature search was performed in PubMed, Embase, and Cochrane Library, and 18 articles were included. CTC has emerged in recent years as a potential screening examination with high accuracy for the detection of colorectal lesions. However, the clinical application of CTC as a screening technique is limited because it is highly dependent on the size of the lesions and has poor performance in detecting individual lesions <5 mm or flat lesions, which, although rarely, can have a malignant potential.
Microparticle separation has demonstrated significant potential for biological, chemical, and medical applications. We introduce a surface acoustic wave (SAW)-based microfluidic device for separation of elastic and rigid microspheres based on their property and size. By tuning the SAWs to match the resonant frequencies of certain microspheres, those particles could be selectively separated from the other microspheres. When microspheres are exposed to an acoustic field, they experience the SAW-induced acoustic radiation force (ARF), whose magnitude is dependent on the microparticle size and properties. We modeled the SAW-induced ARF based on elastic sphere theory and conducted a series of experiments to separate elastic and rigid microspheres. We further utilized the acoustofluidic method for the separation of Thalassiosira Eccentrica microalgae based on the differences in their sizes with purity exceeding 90%. We anticipate that our technique will open up new possibilities for sample preparation, detection, and diagnosis in various emerging biological and medical analyses.
In this paper, a semi-supervised machine learning technique applied to actual field vibration data acquired from Jeju-do wind turbines for predictive diagnosis of abnormal conditions of offshore wind turbines is introduced. Semi-supervised machine learning, which combines un-supervised learning with supervised learning, can be used to perform anomaly detection in situations where sufficient fault data cannot be obtained. The signal processing results using the spectrogram of the original signal were shown, and external data were used to overcome the problem that disturbance reactions easily occurred due to the imbalance between the number of normal and abnormal data. Out of distribution (OOD), which uses external data, is a technology that is regarded as abnormal data that is unlikely to occur in reality, but we were able to use it by expanding it. By rearranging the distribution of data in this way, classification can be performed more robustly. Specifically, by observing the trends of the abnormal score and the change in the feature of the representation layer, continuous learning was performed through a mixture of existing and new data.
Yujun Ye;Yikai Zhu;Bo Lei;Zhihai Weng;Hongchang Xu;Huaping Wan
Structural Monitoring and Maintenance
/
v.11
no.3
/
pp.203-217
/
2024
Electro-mechanical impedance (EMI) technique is a low-cost structural damage detection method. It reflects structural damage through the change in admittance signal which contains the structural mechanical impedance information. The ambient temperature greatly affects the admittance signal, which hides the changes caused by structural damage and reduces the accuracy of damage identification. This study introduces a convolutional neural network to compensate for the temperature effect. The proposed method uses a framework that consists of a feature extraction network and a decoding network, and the original admittance signal with temperature information is used as the input. The output admittance signal is eliminated from the temperature effect, improving damage identification robustness. The admittance data simulated by the finite element model of the spatial grid structure is used to verify the effectiveness of the proposed method. The results show that the proposed method has advantages in identification accuracy compared with the damage index minimization method and the principal component analysis method.
Audio event classification refers to the detection and classification of non-verbal signals, such as dog and horn sounds included in audio data, by a computer. Recently, deep neural network technology has been applied to audio event classification, exhibiting higher performance when compared to existing models. Among them, a convolutional neural network (CNN)-based training method that receives audio in the form of a spectrogram, which is a two-dimensional image, has been widely used. However, audio event classification has poor performance on test data when it is recorded by a device (unknown device) different from that used to record training data (known device). This is because the frequency range emphasized is different for each device used during recording, and the shapes of the resulting spectrograms generated by known devices and those generated by unknown devices differ. In this study, to improve the performance of the event classification system, a CNN based on the log mel-spectrogram separation technique was applied to the event classification system, and the performance of unknown devices was evaluated. The system can classify 16 types of audio signals. It receives audio data at 0.4-s length, and measures the accuracy of test data generated from unknown devices with a model trained via training data generated from known devices. The experiment showed that the performance compared to the baseline exhibited a relative improvement of up to 37.33%, from 63.63% to 73.33% based on Google Pixel, and from 47.42% to 65.12% based on the LG V50.
Tianyu Liang;Hongyang Zhao;Seyedeh Fatemeh Saffari;Daeho Kim
International conference on construction engineering and project management
/
2024.07a
/
pp.1065-1072
/
2024
Previous approaches to 3D excavator pose estimation via synthetic data training utilized a single virtual excavator model, low polygon objects, relatively poor textures, and few background objects, which led to reduced accuracy when the resulting models were tested on differing excavator types and more complex backgrounds. To address these limitations, the authors present a realism-centric synthetization and labeling approach that synthesizes results with improved image quality, more detailed excavator models, additional excavator types, and complex background conditions. Additionally, the data generated includes dense pose labels and depth maps for the excavator models. Utilizing the realism-centric generation method, the authors achieved significantly greater image detail, excavator variety, and background complexity for potentially improved labeling accuracy. The dense pose labels, featuring fifty points instead of the conventional four to six, could allow inferences to be made from unclear excavator pose estimates. The synthesized depth maps could be utilized in a variety of DNN applications, including multi-modal data integration and object detection. Our next step involves training and testing DNN models that would quantify the degree of accuracy enhancement achieved by increased image quality, excavator diversity, and background complexity, helping lay the groundwork for broader application of synthetic models in construction robotics and automated project management.
News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.
In this paper, the problems in identifying the noise sources by using the sound intensity technique are dealt with for the general radiated near-field from vibro-acoustic sources. For this purpose, a three-dimensional model structure resembling the engine room of a car or heavy equipment is considered. Similar to the practical situations, the model contains many mutually coherent and incoherent noise sources distributed on the complicated surfaces. The sources are located on the narrow, connected, reflecting planes constructed with rigid boxes, of which a small clearance exists between the whole box structure and the reflecting bottom. The acoustic boundary element method is employed to calculate the acoustic intensity at the near-field surfaces and interior spaces. The effects of relative source phases, frequencies, and locations are investigated, from which the results are illustrated by the contour map, vector plot, and energy streamlines. It is clearly observed that the application of sound intensity technique to the reactive or reverberant field, e.g., scanning over the upper engine room as is usually practiced, can yield the detection of fake sources. For the precise result for such a field, the field reactivity should be checked a priori and the proper effort should be directed to reduce or improve the reactivity of sound field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.