References
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications", Mech. Syst. Signal Pr., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077.
- Azimi, M., Eslamlou, A.D. and Pekcan, G. (2020), "Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review", Sensors, 20(10), 2778. https://doi.org/10.3390/s20102778.
- Baral, S., Negi, P., Adhikari, S. and Bhalla, S. (2023), "Temperature compensation for reusable piezo configuration for condition monitoring of metallic structures: EMI approach", Sensors, 23(3), 1587. https://doi.org/10.3390/s23031587.
- Bhalla, S. and Soh, C.K. (2004), "Structural health monitoring by piezo-impedance transducers. I: modeling", J. Aerosp. Eng., 17(4), 154-165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154).
- de Rezende, S.W.F., de Moura, J.D.R.V., Neto, R.M.F., Gallo, C.A. and Steffen, V. (2020), "Convolutional neural network and impedance-based SHM applied to damage detection", Eng. Res. Express, 2(3), 035031. https://doi.org/10.1088/2631-8695/abb568.
- Du, F., Wu, S., Xu, C., Yang, Z. and Su, Z. (2021), "Electromechanical impedance temperature compensation and bolt loosening monitoring based on modified Unet and multitask learning", IEEE Sensors J., 23(5), 4556-4567. https://doi.org/10.1109/JSEN.2021.3132943.
- Hou, R. and Xia, Y. (2021), "Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019", J. Sound Vib., 491, 115741. https://doi.org/10.1016/j.jsv.2020.115741.
- Huynh, T.C., Dang, N.L. and Kim, J.T. (2018), "PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage", Smart Struct. Syst., 22(1), 57-70. https://doi.org/10.12989/sss.2018.22.1.057.
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980.
- Koo, K.Y., Park, S., Lee, J.J. and Yun, C.B. (2009), "Automated iImpedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intell. Mater. Syst. Struct., 20(4), 367-377. https://doi.org/10.1177/1045389X08088664.
- Li, H., Ai, D., Zhu, H. and Luo, H. (2021), "Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures", Mech. Syst. Signal Pr., 152, 107467. https://doi.org/10.1016/j.ymssp.2020.107467.
- Lu, R., Shen, Y., Zhang, B. and Xu, W. (2023), "Nonlinear Electro-Mechanical Impedance Spectroscopy for fatigue crack monitoring", Mech. Syst. Signal Pr., 184, 109749. https://doi.org/10.1016/j.ymssp.2022.109749.
- Morwal, T., Bansal, T., Azam, A. and Talakokula, V. (2023), "Monitoring chloride-induced corrosion in metallic and reinforced/prestressed concrete structures using piezo sensors-based electro-mechanical impedance technique: A review", Measurement, 218, 113102.7. https://doi.org/10.1016/j.measurement.2023.113102.
- Na, W.S. and Baek, J. (2018), "A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures", Sensors, 18(5), 1307. https://doi.org/10.3390/s18051307.
- Parida L., Moharana, S., Ferreira, V.M., Giri, S.K. and Ascensao, G. (2022), "A novel CNN-LSTM hybrid model for prediction of electro-mechanical impedance signal based bond strength monitoring", Sensors, 22(24), 9920. https://doi.org/10.3390/s22249920.
- Park, G., Sohn, H. and Farrar, C.R. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-464. https://doi.org/10.1177/05831024030356001
- Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J., 42(2), 249-258. https://doi.org/10.1299/jsmea.42.249.
- Qiu, H. and Li, F. (2022), "Bolt looseness monitoring based on damping measurement by using a quantitative electro-mechanical impedance method", Smart Mater. Struct., 31(9), 095022. https://doi.org/10.1088/1361-665X/ac80e1.
- Wan, H.P. and Ni, Y Q. (2019), "Bayesian multi-task learning methodology for reconstruction of structural health monitoring data", Struct. Health Monit., 18(4), 1282-1309. https://doi.org/10.1177/147592171879495.
- Wan, H.P. and Ni, Y.Q. (2018), "Bayesian modeling approach for forecast of structural stress response using structural health monitoring data", J. Struct. Eng., 144(9), 04018130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002085.
- Wan, H.P., Zhu, Y.K., Luo, Y. and Todd, M.D. (2024), "Unsupervised deep learning approach for structural anomaly detection using probabilistic features", Struct. Health Monit., https://doi.org/10.1177/14759217241226804.
- Zhao, S., Fan, S., Yang, J. and Kitipornchai, S. (2023), "Numerical and experimental investigation of electro-mechanical impedance based concrete quantitative damage assessment", Smart Mater. Struct., 29(5), 055025. https://doi.org/10.1088/1361-665X/ab58e9.