• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.036 seconds

A Study on Utilizing Smartphone for CMT Object Tracking Method Adapting Face Detection (얼굴 탐지를 적용한 CMT 객체 추적 기법의 스마트폰 활용 연구)

  • Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.588-594
    • /
    • 2021
  • Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.

Automatic Detection System of Underground Pipe Using 3D GPR Exploration Data and Deep Convolutional Neural Networks

  • Son, Jeong-Woo;Moon, Gwi-Seong;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.27-37
    • /
    • 2021
  • In this paper, we propose Automatic detection system of underground pipe which automatically detects underground pipe to help experts. Actual location of underground pipe does not match with blueprint due to various factors such as ground changes over time, construction discrepancies, etc. So, various accidents occur during excavation or just by ageing. Locating underground utilities is done through GPR exploration to prevent these accidents but there are shortage of experts, because GPR data is enormous and takes long time to analyze. In this paper, To analyze 3D GPR data automatically, we use 3D image segmentation, one of deep learning technique, and propose proper data generation algorithm. We also propose data augmentation technique and pre-processing module that are adequate to GPR data. In experiment results, we found the possibility for pipe analysis using image segmentation through our system recorded the performance of F1 score 40.4%.

Design of New Fine Dust Measurement Method applying LoG Edge Detection Technique (LoG 윤곽선 검출 기법을 적용한 새로운 미세먼지 측정 방법 설계)

  • Jang, Taek-Jin;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.69-73
    • /
    • 2022
  • In this paper, we propose a new method for measuring fine dust through a LoG(Laplacian of Gaussian)-based edge detection technique. CCTV-based images in a video are collected for fine dust measurement, and image ranges are designated through RoI(Region of Interest). After clustering by applying the GMM(Gaussian Mix Model) to the specified area, we detect edge through the LoG algorithm and measure the detected edge strength. The concentration of fine dust is determined based on the measured intensity data of the edge. In this paper, we propose algorithm as the effectiveness of experiment. As a result of collecting and applying CCTV image in the video installed around the laboratory of this school for a month from June to July, the measured result value was proved through this experiment to be sufficient to calculate the concentration and range of fine dust.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

Location Estimation Technique Based on TOA and TDOA Using Repeater (중계기를 이용한 TOA 및 TDOA 기반의 위치추정 기법)

  • Jeon, Seul-Bi;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.571-576
    • /
    • 2022
  • Due to the epochal development of the unmanned technology, the importance of LDT(: Location Detection Technology), which accurately estimates the location of a user or object, is dramatically increased. TOA(: Time of Arrival), which calculates a location by measuring the arrival time of signals, and TDOA(: Time Difference of Arrival) which calculates it by measuring the difference between two arrival times, are representative LDT methods. Based on the signals received from three or more base stations, TOA calculates an intersection point by drawing circles and TDOA calculates it by drawing hyperbolas. In order to improve the radio shadow area problem, a huge number of repeaters have been installed in the urban area, but the signals received through these repeaters may cause the serious error for estimating a location. In this paper, we propose an efficient location estimation technique using the signal received through the repeater. The proposed approach estimates the location of MS(: Mobile Station) employing TOA and TDOA methods, based on signals received from one repeater and two BS(: Base Station)s.

Wiener filtering-based ambient noise reduction technique for improved acoustic target detection of directional frequency analysis and recording sonobuoy (Directional frequency analysis and recording 소노부이의 표적 탐지 성능 향상을 위한 위너필터링 기반 주변 소음 제거 기법)

  • Hong, Jungpyo;Bae, Inyeong;Seok, Jongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • As an effective weapon system for anti-submarine warfare, DIrectional Frequency Analysis and Recording (DIFAR) sonobuoy detects underwater targets via beamforming with three channels composed of an omni-direcitonal and two directional channels. However, ambient noise degrades the detection performance of DIFAR sonobouy in specific direction (0°, 90°, 180°, 270°). Thus, an ambient noise redcution technique is proposed for performance improvement of acoustic target detection of DIFAR sonobuoy. The proposed method is based on OTA (Order Truncate Average), which is widely used in sonar signal processing area, for ambient noise estimation and Wiener filtering, which is widely used in speech signal processing area, for noise reduction. For evaluation, we compare mean square errors of target bearing estmation results of conventional and proposed methods and we confirmed that the proposed method is effective under 0 dB signal-to-noise ratio.

A Study on the Image/Video Data Processing Methods for Edge Computing-Based Object Detection Service (에지 컴퓨팅 기반 객체탐지 서비스를 위한 이미지/동영상 데이터 처리 기법에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.11
    • /
    • pp.319-328
    • /
    • 2023
  • Unlike cloud computing, edge computing technology analyzes and judges data close to devices and users, providing advantages such as real-time service, sensitive data protection, and reduced network traffic. EdgeX Foundry, a representative open source of edge computing platforms, is an open source-based edge middleware platform that provides services between various devices and IT systems in the real world. EdgeX Foundry provides a service for handling camera devices, along with a service for handling existing sensed data, which only supports simple streaming and camera device management and does not store or process image data obtained from the device inside EdgeX. This paper presents a technique that can store and process image data inside EdgeX by applying some of the services provided by EdgeX Foundry. Based on the proposed technique, a service pipeline for object detection services used core in the field of autonomous driving was created for experiments and performance evaluation, and then compared and analyzed with existing methods.

Noise-robust electrocardiogram R-peak detection with adaptive filter and variable threshold (적응형 필터와 가변 임계값을 적용하여 잡음에 강인한 심전도 R-피크 검출)

  • Rahman, MD Saifur;Choi, Chul-Hyung;Kim, Si-Kyung;Park, In-Deok;Kim, Young-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.126-134
    • /
    • 2017
  • There have been numerous studies on extracting the R-peak from electrocardiogram (ECG) signals. However, most of the detection methods are complicated to implement in a real-time portable electrocardiograph device and have the disadvantage of requiring a large amount of calculations. R-peak detection requires pre-processing and post-processing related to baseline drift and the removal of noise from the commercial power supply for ECG data. An adaptive filter technique is widely used for R-peak detection, but the R-peak value cannot be detected when the input is lower than a threshold value. Moreover, there is a problem in detecting the P-peak and T-peak values due to the derivation of an erroneous threshold value as a result of noise. We propose a robust R-peak detection algorithm with low complexity and simple computation to solve these problems. The proposed scheme removes the baseline drift in ECG signals using an adaptive filter to solve the problems involved in threshold extraction. We also propose a technique to extract the appropriate threshold value automatically using the minimum and maximum values of the filtered ECG signal. To detect the R-peak from the ECG signal, we propose a threshold neighborhood search technique. Through experiments, we confirmed the improvement of the R-peak detection accuracy of the proposed method and achieved a detection speed that is suitable for a mobile system by reducing the amount of calculation. The experimental results show that the heart rate detection accuracy and sensitivity were very high (about 100%).

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.