• Title/Summary/Keyword: design ground acceleration

Search Result 291, Processing Time 0.027 seconds

Investigation of the seismic performance of precast segmental tall bridge columns

  • Bu, Z.Y.;Ding, Y.;Chen, J.;Li, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.287-309
    • /
    • 2012
  • Precast segmental bridge columns (PSBC) are alternatives for monolithic cast-in-situ concrete columns in bridge substructures, with fast construction speed and structural durability. The analytical tool for common use is demonstrated applicable for seismic performance prediction of PSBCs through experiment conducted earlier. Then the analytical program was used for parameter optimization of PSBC configurations under reversal cyclic loading. Shear strength by pushover analysis was compared with theoretical prediction. Moreover, seismic response of PSBC with energy dissipation (ED) bars was compared with its no ED bar counterpart under three history ground acceleration records. The investigation shows that appropriate ED bar and post-tensioned tendon arrangement is important for higher lateral bearing capacity and good ductility performance of PSBCs.

RTS test study and numerical simulation of mechanical properties of HDR bearings

  • Peng, Tianbo;Wu, Yicheng
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.

HYBRID ROLL CONTROL USING ELECTRIC ARC SYSTEM CONSIDERING LIMITED BANDWIDTH OF ACTUATING MODULE

  • Kim, H.J.;Lee, C.R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.123-128
    • /
    • 2002
  • This paper presents the design of an active roll control system for a ground vehicle and an experimental study using an devised electric-actuating roll control system. Based on a three degree of freedom linear vehicle model, the controller is designed using lateral acceleration and rollrate feedback. In order to investigate the feasibility of an active control system, experimental work is carried out using a hardware-in-the-loop (Hil) setup which has been constructed by the devised electric-actuating system and the full vehicle model including tire characteristics. The performance is evaluated by an experiment using the Hil setup with limited bandwidth. Finally, in order to enhance the control performance in the transient region, a hybrid control strategy is proposed and evaluated.

Development of Ventilation Isolation Design and Material for Vibration Reduction of Road Passing through Buildings (건물을 통과하는 도로의 진동저감을 위한 방진설계 및 방진재 개발)

  • Lee, J.S.;Lee, J.H.;Kim, Dae-Hyeon;Yun, Eun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1123-1128
    • /
    • 2006
  • 철도 및 도로교통에 의한 건축구조물의 진동, 소음을 저감시킬 수 없는 PO-MAT(Polyurethane Mat) 제품과 다양한 건축물의 진동, 소음이 전달되는 상황에 적용되어 방진효과를 정확하게 예측하는데 사용될 수 있는 설계안을 개발하였다. 개발된 제품은 다공질의 폴리우레탄 탄성체의 조직으로 도로 및 철도의 교통진동의 방진과 연구실, 기계실, 공조실 등의 Floating Floor System 및 건축기초의 내진용으로 사용되고, 실제구조물에 적용하여 진동저감과 충격흡수, 소음저감 효과가 탁월함을 확인하였다.

  • PDF

A Study on the Methodology for Determining Dynamic Loadings of Automotive Suspension System Using Measurement and Modeling

  • 김호용;이재곤;박용국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.262-271
    • /
    • 1999
  • To design suspension system and estimate its durability , the loading history of each suspension part exposed to various operation conditions should be known from either measurement or computations. Based on these results, stress analysis is carried out to obtain the optimal shape and to reduce the production cost through the proper selection of manufacturing process. In this paper, first the measurement of 3-directional accelerations of wheel center using an accelerometer are undertaken from a vehicle running on Belgian road. Then the data measured from experiments are pre-processed with filtering . Based on the pre-processed data the methodology for determining the dynamic loading to each suspension part is developed by simply modeling the suspension system with ADAMS software. Eventually , it is expected that dynamic loadings can be used for the dynamic stress and fatigue analyses.

  • PDF

Analysis of Seismic Response Characteristics for Wolsong Nuclear Power Plant Structures (월성원전 구조물의 지진응답 특성 분석)

  • 허택영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.90-97
    • /
    • 1997
  • The purpose of this study is to evaluate the seismic response characteristics of Wolsong nuclear power plant (NPP) structures for the Kyeongju earthquake(ML=4.3) occurred on June 26, 1997. The seismograms are obtained from five accelerographs of nuclear power plant at Wolsong, Kyeongbuk. The distance from the epicenter is about 25km. The peak acceleration (PA) due to the earthquake is 0.0235g, which is far lower value than that of design basis earthquake(DBE). The PA at the containment wall is about twice as large as that at free field. Also, the higher the accelerograph is located in, the larger the PA is measured to be From the response spectrum analysis, the dominant frequency of the response is close to 4 Hz, which is similar to the free field is poor because of contamination by high frequency waves as a result of reflection and diffraction between ground and NPP structure. We are of opinion that the accelerograph at the free field should be moved approximately twice the building dimension away from the containment structure.

  • PDF

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities (첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

A Study on the Damping Correction Factors for the Korean Standard Design Spectrum (한국 표준설계스펙트럼의 감쇠보정계수에 대한 연구)

  • Heo, Tae Min;Kim, Jung Han;Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • In this study, we develop and propose damping correction factors for the Korean standard design spectra. The newly proposed Korean standard design spectra has been given only for 5% damping ratio. But in practice, engineers need design spectra for damping values other than 5%. To obtain design spectra for various damping values from the standard spectra, damping correction factors are derived. These factors modify the shape of design spectra in accordance with the damping ratio. Response spectra for various damping values are calculated from the earthquake records that had been used to calculate standard design spectra. They consist of 55 records from 18 earthquakes occurred in overseas intraplate regions and Korea. The regressed spectra for the damping values ranging from 0.5% to 50 % are compared with standard spectra at three regions acceleration, velocity and displacement sensitive regions. The regression analysis of these data rendered formula for damping correction factors. Finally, a single formula for damping correction factors is recommended that is valid for both horizontal and vertical design spectra and that is applicable to the entire range of periods. One thing to note that recommended damping correction factors is valid for the design spectrum of the rock grounds because the design spectra was developed based on the earthquake records of the rock ground.

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.