• Title/Summary/Keyword: depth-image

Search Result 1,831, Processing Time 0.029 seconds

Dziga Vertov's Film Theory of Soviet Silent Film -By Comparison between Montage Theory of Sergei Eisenstein and Dziga Vertov Film Theory- (소비에트 무성영화의 지가 베르토프 영화이론 -세르게이 에이젠슈테인의 몽타주론을 비교중심으로-)

  • Jeon, Pyoung-Kuk;Kim, Noh-Ik
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.147-158
    • /
    • 2010
  • The Soviet Silent Films in the 1920s, produced a brilliant prosperity in the history of world films in the cultural and artistic aspects. Among them, Dziga Vertov was a film theorists and a practitioner along with Sergei M. Einstein played a pivotal role in the contemporary soviet films at the time. But the film theories of Vetro is incorrectly recognized or specialized compared to the theories of Eisenstein. But Deleuze has stated that the short in the movie of Vertov is able to deliver a meaning and an impact and he has emphasized that a short can be significant by itself by focusing on the 'truth' which a documentary must have. His film theories are based on futurism and constructivism and use the 'kino-eye' method and 'Interval' theory to summarize and organize his movies into 'movie-truth' principal and 'life as itself' concept. Deleuze the purpose of this research is to analyze with the Vertov core of film theory and every theory of kino eye as the foundation and by comparing the Montage Theory of Sergei Eisenstein and applying Deleuze's Image Theory. Furthermore, it can be insufficient to discuss the film commercial achievements of Vertov as a result of inadequacy of previous research but it will further study his innovative methods and depth of his theories in his representation form in the documentary films.

Real-Time 3-D Ultrasound Imaging Method using a 2-D Curved Array (이차원 곡면 어레이를 이용한 실시간 3차원 초음파 영상화 기법)

  • 김강식;한호산;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.351-364
    • /
    • 2002
  • Conventional 3D ultrasound imaging using mechanical ID arrays suffers from poor elevation resolution due to the limited depth-of-focus (DOF). On the other hand, 3D imaging systems using 2D phased arrays have a large number of active channels and hence require a very expensive and bulky beamforming hardware. To overcome these limitations, a new real-time volumetric imaging method using curved 2-D arrays is presented, in which a small subaperture, consisting of 256 elements, moves across the array surface to scan a volume of interest. For this purpose, a 2-D curved array is designed which consists of 90$\times$46 elements with 1.5λ inter-element spacing and has the same view angles along both the lateral and elevation directions as those of a commercial mechanical 1-D array. In the proposed method, transmit and receive subapertures are constructed by cutting the four corners of a rectangular aperture to obtain a required image qualify with a small number of active channels. In addition the receive subaperture size is increased by using a sparse array scheme that uses every other elements in both directions. To suppress the grating lobes elevated due to the increase in clement spacing, fold-over array scheme is adopted in transmit, which doubles the effective size of a transmit aperture in each direction. Computer simulation results show that the proposed method can provide almost the same and greatly improved resolutions in the lateral and elevation directions, respectively compared with the conventional 3D imaging with a mechanical 1-D array.

A Study on Children Edutainment Contents Development with Hand Gesture Recognition and Electronic Dice (전자주사위 및 손동작 인식을 활용한 아동용 에듀테인먼트 게임 콘텐츠 개발에 관한 연구)

  • Ok, Soo-Yol
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1348-1364
    • /
    • 2011
  • As the existing edutainment contents for children are mostly comprised of educational tools which unilaterally induce educatees to passively respond to them, the content-creating methodologies in terms of which active and voluntary learning is made possible is urgently needed. In this paper, we present the implementation of the tangible 'electronic dice' interface as an interactive tool for behavior-based edutainment contents, and propose a methodology for developing edutainment contents for children by utilizing the recognition technique of hand movement based on depth-image information. Also proposed in the paper are an authoring and management tool of learning quizzes that allows educators to set up and manage their learning courseware, and a log analysis system of learning achievement for real-time monitoring of educational progress. The behavior-based tangible interface and edutainment contents that we propose provide the easy-to-operate interaction with a real object, which augments educatees' interest in learning, thus leading to their active and voluntary attitude toward learning. Furthermore, The authoring and management tool and log analysis system allow us to construct learning programs by children's achievement level and to monitor in real-time the learning development of children educatees by understanding the situation and behavior of their learning development from the analytic results obtained by observing the processes of educatees' solving problems for themselves, and utilizing them for evaluation materials for lesson plans.

DETECTION AND MASKING OF CLOUD CONTAMINATION IN HIGH-RESOLUTION SST IMAGERY: A PRACTICAL AND EFFECTIVE METHOD FOR AUTOMATION

  • Hu, Chuanmin;Muller-Karger, Frank;Murch, Brock;Myhre, Douglas;Taylor, Judd;Luerssen, Remy;Moses, Christopher;Zhang, Caiyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1011-1014
    • /
    • 2006
  • Coarse resolution (9 - 50 km pixels) Sea Surface Temperature satellite data are frequently considered adequate for open ocean research. However, coastal regions, including coral reef, estuarine and mesoscale upwelling regions require high-resolution (1-km pixel) SST data. The AVHRR SST data often suffer from navigation errors of several kilometres and still require manual navigation adjustments. The second serious problem is faulty and ineffective cloud-detection algorithms used operationally; many of these are based on radiance thresholds and moving window tests. With these methods, increasing sensitivity leads to masking of valid pixels. These errors lead to significant cold pixel biases and hamper image compositing, anomaly detection, and time-series analysis. Here, after manual navigation of over 40,000 AVHRR images, we implemented a new cloud filter that differs from other published methods. The filter first compares a pixel value with a climatological value built from the historical database, and then tests it against a time-based median value derived for that pixel from all satellite passes collected within ${\pm}3$ days. If the difference is larger than a predefined threshold, the pixel is flagged as cloud. We tested the method and compared to in situ SST from several shallow water buoys in the Florida Keys. Cloud statistics from all satellite sensors (AVHRR, MODIS) shows that a climatology filter with a $4^{\circ}C$ threshold and a median filter threshold of $2^{\circ}C$ are effective and accurate to filter clouds without masking good data. RMS difference between concurrent in situ and satellite SST data for the shallow waters (< 10 m bottom depth) is < $1^{\circ}C$, with only a small bias. The filter has been applied to the entire series of high-resolution SST data since1993 (including MODIS SST data since 2003), and a climatology is constructed to serve as the baseline to detect anomaly events.

  • PDF

3D Visual Attention Model and its Application to No-reference Stereoscopic Video Quality Assessment (3차원 시각 주의 모델과 이를 이용한 무참조 스테레오스코픽 비디오 화질 측정 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.110-122
    • /
    • 2014
  • As multimedia technologies develop, three-dimensional (3D) technologies are attracting increasing attention from researchers. In particular, video quality assessment (VQA) has become a critical issue in stereoscopic image/video processing applications. Furthermore, a human visual system (HVS) could play an important role in the measurement of stereoscopic video quality, yet existing VQA methods have done little to develop a HVS for stereoscopic video. We seek to amend this by proposing a 3D visual attention (3DVA) model which simulates the HVS for stereoscopic video by combining multiple perceptual stimuli such as depth, motion, color, intensity, and orientation contrast. We utilize this 3DVA model for pooling on significant regions of very poor video quality, and we propose no-reference (NR) stereoscopic VQA (SVQA) method. We validated the proposed SVQA method using subjective test scores from our results and those reported by others. Our approach yields high correlation with the measured mean opinion score (MOS) as well as consistent performance in asymmetric coding conditions. Additionally, the 3DVA model is used to extract information for the region-of-interest (ROI). Subjective evaluations of the extracted ROI indicate that the 3DVA-based ROI extraction outperforms the other compared extraction methods using spatial or/and temporal terms.

Development of 3-D Stereotactic Localization System and Radiation Measurement for Stereotactic Radiosurgery (방사선수술을 위한 3차원 정위 시스템 및 방사선량 측정 시스템 개발)

  • Suh, Tae-Suk;Suh, Doug-Young;Park, Sung-Hun;Jang, Hong-Seok;Choe, Bo-Young;Yoon, Sei-Chul;Shinn, Kyung-Sub;Bahk, Yong-Whee;Kim, Il-Hwan;Kang, Wee-Sang;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.

  • PDF

The Comparative Study of Alveolar Bone Level and Root Form of the Mandibular Molar on Radiographic Image and Clinical Examination (방사선사진과 임상검사에서 하악 대구치 치근의 형태학적 구조 및 치조골 수준에 관한 비교연구)

  • Park, Jung-Bae;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.281-292
    • /
    • 2004
  • Periodontal defects of the furcation are characterized by several inherent anatomic factors that can make successful periodontal therapy difficult and results unpredictable. The severity and rate of occurrence of periodontal disease are directly related to the location of the furcation relative to the cementa-enamel junction and anatomical form of the root by limiting the accessibility and effectiveness of the periodontal instrumentation. This study investigated the reliability and accuracy of panoramic radiograph diagnoses of the periodontal state of mandibular molars, particularly regarding the diagnosis of furcation area periodontal defects, treatment planning, and prognosis prediction. This study examined a total of 110 teeth belonging to 33 subjects (19 male, 14 female) presenting with incipient to moderate periodontitis 4-7mmpocket depth. The alveolar bone level, length and width of the root trunk, and root separation angle were measured using the panoramic radiograph and compared to the results taken directly by retracting a full-thickness flap. The results of the study are as follows: 1. Data regarding the alveolar bone level of the mandibular first molar showed that the directly taken surgical measurements resulted in $5.1{\pm}0.9mm$ that was slightly deeper than the corresponding panoramic measurement resulted in $4.8{\pm}0.8mm$, but these differences were statistically insignificant (p>0.05). 2. The data of the directly taken surgical measurement of the mandibular second molar $(5.1{\pm}1.1mm)$ was slightly deeper than the corresponding panoramic measurement $(4.7{\pm}1.2mm)$, but these differences were statistically insignificant (p>0.05). 3. The measured values of the length and width of the mandibular first molar root trunks were determined to be $4.1{\pm}0.6mm$ and $7.3{\pm}0.9mm$, respectively, while the values of the mandibular second molar root trunks were determined to be $4.6{\pm}1.3mm$ and $7.6{\pm}0.9mm$ respectively. The differences between these values were found to be statistically significant (p<0.01). 4. The measured values of the root separation angle showed that the mandibular first molars averaged $34.5{\pm}4.4^{\circ}$, while the mandibular second molars averaged $23.0{\pm}10.0^{\circ}$. The differences between these values were found to be statistically significant (p<0.01).

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

Approaching Method for Detecting Vessels in the Korean Waters using the Panchromatic Imagery of IRS-1C Satellite (Panchromatic 위성 자료를 이용한 선박 확인의 접근 기법)

  • Suh, Young-Sang;Choi, Chul-Uong;Lee, Na-Kyung;Kim, Bok-Kee;Jang, Lee-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.4
    • /
    • pp.86-92
    • /
    • 2002
  • The feasibility of counting number of small vessels and position in Korean waters using the panchromatic imageries derived from the IRS-1C was tested. The parameters for interpretation of satellite's imageries of small vessels were location(position), size, shape, shadow, tone, texture and pattern, height and depth, situation and association with other vessels. The position of small vessels in the sea without GCP(ground control point) was considered to be inclusive in the satellite imagery with 35 km semi-diameter, denoting rough geographical position of the vessel. The size of vessel was measured by length from stem to stern of the vessel, distinguished by following wave on the surface water. Offshore fishing vessels were separated from merchant ships by their length smaller than 100 m. The shape of vessels on panchromatic imagery of IRS-1C appeared just streamline. In case of clouds which were similar to the shape of small vessels, we were able to distinguish between vessel and cloud by shadow of cloud in the water surface. The tone of sea surface was dark black while small vessel appeared bright white. Small vessel was distinguished from the rough texture of the sea surface and the regular pattern of the waves with white capes when weather was not so good. The situation of the fishing activity was estimated by information of fishing method related to the fishing boat such as the pair trawl in the Yellow Sea.

  • PDF

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.