• Title/Summary/Keyword: density distribution method

Search Result 1,189, Processing Time 0.032 seconds

Eddy-Current Loss Analysis in Rotor of Surface-Mounted Permanent Magnet Machines Using Analytical Method (해석적 방법을 이용한 표면부착형 영구자석 기기의 회전자 와전류 손실해석)

  • Choi, Jang-Young;Choi, Ji-Hwan;Jang, Seok-Myeong;Cho, Han-Wook;Lee, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1115-1122
    • /
    • 2012
  • This paper analyzes eddy-current loss induced in magnets of surface-mounted permanent magnet (SPM) machines by using an analytical method such as a space harmonic method. First, on the basis of a two-dimensional (2D) polar coordinate system and a magnetic vector potential, the analytical solutions for the flux density produced by armature winding current are obtained. By using derived field solutions, the analytical solutions for eddy current density distribution are also obtained. Finally, analytical solutions for eddy current loss induced in rotor magnets are derived by using equivalent electrical resistance calculated from magnet volume and analytical solutions for eddy-current density distribution. In particular, the influence of time harmonics in armature current on the eddy current loss is fully investigated and discussed. All analytical results are validated extensively by finite element analysis (FEA).

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF

Estimation of Probability Density Function of Tidal Elevation Data (조위자료의 확률밀도함수 추정)

  • Hong Yeon Cho;Jeong Shin Taek;Oh Young Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.152-161
    • /
    • 2004
  • Double-peak normal distribution function was suggested as the probability density function of the tidal elevation data in Korean coastal zone. Frequency distribution analysis was carried out using hourly tidal elevation data of the ten tidal gauging stations, i.e., Incheon, Kunsan, Mokpo, Cheju, Yeosu, Masan, Gadeokdo, Pusan, Pohang, and Sokcho which were served through the Internet Homepage by the National Ocean Research Institute. Based on the RMS error and $R^2$ value comparison analysis, it was found that this suggested function as the probability density function of the tidal elevation data was found to be more appropriate than the normal distribution function. The parameters of the double-peak function were estimated optimally using Levenberg-Marquardt method which was modified from the Newton method. The estimated parameters were highly correlated with the non-tidal constants of the tidal gauging stations.

Inversion of Geophysical Data with Robust Estimation (로버스트추정에 의한 지구물리자료의 역산)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.433-438
    • /
    • 1995
  • The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.

  • PDF

Charge Distribution in a capacitor observed by PEA Method (PEA법에 의한 캐패시터내 전하분포 측정)

  • Endrowednes, Kuantama;Han, Deok-Woo;Kwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1156-1157
    • /
    • 2008
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about 205 $C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}$ = 2.5 V, while the positively charged density became the maximum, about 61.1 $C/m^3$ at the region where it was located around the cathode layer. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

  • PDF

Electromagnetic Behavior of High -$T_c$ Superconductors underthequenchstate -

  • 정동철;최효상;황종선;윤기웅;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.183-187
    • /
    • 2002
  • In this paper we analyzed the electromagnetic behavior of high $-T_{c}$ superconductor under the quench state using finite element method. Poisson equation was used in finite element analysis as a governing equation and was solved using algebra equation using Gallerkin method. We first investigate d the electromagnetic behavior of U-type superconductor. Finally we applied our analysis techniques to 5.5 kVA meander-line superconducting fault current limiters (SFCL) which are currently developed by many power-system researcher in the world. Meshes of 14,600 elements were used in analysis of this SFCL. Analysis results show that the distribution of current density was concentrated to inner curvature in meander-line type-superconductors and maximum current density 14.61 $A/\m^2$ and also maximum Joule heat was 6,420 W/㎥. We concluded that this meander line-type SFCL was not pertinet fur uniform electromagnetic field distribution.n.

  • PDF

Dynamic behavior of axially functionally graded simply supported beams

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.669-678
    • /
    • 2020
  • This paper focuses on the free vibration analysis of axially functionally graded (FG) Euler-Bernoulli beams. The material properties of the beams are assumed to obey the linear law distribution. The complexities in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using the Differential Transformation Method (DTM). Natural frequencies and corresponding normalized mode shapes are calculated. Validation targets are experimental data or finite element results. Different parameters such as reinforcement distribution, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. The delivered results prove the capability and the robustness of the applied method. The studied parameters are demonstrated to be very crucial for the normalized natural frequencies and mode shapes.

The Study on BEAM for the Space Domain Analysis of EEG

  • Lee, Gun-Ki;Kang, Ik-Tae;Shin, Sang-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 1994
  • In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Transformation from temporal summation to two-dimensional mappings is formed by 4 nearest point interpolaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality.

  • PDF

Privacy-Preserving Estimation of Users' Density Distribution in Location-based Services through Geo-indistinguishability

  • Song, Seung Min;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.161-169
    • /
    • 2022
  • With the development of mobile devices and global positioning systems, various location-based services can be utilized, which collects user's location information and provides services based on it. In this process, there is a risk of personal sensitive information being exposed to the outside, and thus Geo-indistinguishability (Geo-Ind), which protect location privacy of LBS users by perturbing their true location, is widely used. However, owing to the data perturbation mechanism of Geo-Ind, it is hard to accurately obtain the density distribution of LBS users from the collection of perturbed location data. Thus, in this paper, we aim to develop a novel method which enables to effectively compute the user density distribution from perturbed location dataset collected under Geo-Ind. In particular, the proposed method leverages Expectation-Maximization(EM) algorithm to precisely estimate the density disribution of LBS users from perturbed location dataset. Experimental results on real world datasets show that our proposed method achieves significantly better performance than a baseline approach.

Performance Improvement of IPM-type BLDC Motor Using the Influx Method of Spatial Harmonic in Air-gap Flux Density (공극 자속밀도의 공간 고조파 유입 방법을 통한 IPM type BLDC Motor의 성능 개선)

  • Lee, Kwang-Hyun;Reu, Jin-Wook;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.739-745
    • /
    • 2011
  • This paper proposes a method for reducing the negative spatial harmonics of the radial flux density of an interior-type permanent magnet (IPM) motor. The reliability of the motor is increased by minimizing its vibrations under dynamic eccentricity (DE) state and normal state due to reduction of a negative spatial harmonics component through the influx of a zero spatial harmonics component in the radial flux density. To minimize the vibrations, optimal notches corresponding to the distribution shape of the magnetic field are designed on the rotor pole face. The variations of vibration computation by finite element method (FEM) and the validity of the analysis and rotor shape design are confirmed by vibration and performance experiments.