A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain

스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘

  • Kim, Young (Department of Orthopedic Surgery, Department of Mechanical Engineering University of Wisconsin-Madison) ;
  • Vanderby, Ray (Department of Orthopedic Surgery, Department of Mechanical Engineering University of Wisconsin-Madison)
  • 김용 (정형외과/기계공학과 위스콘신 주립대, 미국) ;
  • 벤더비 레이 (정형외과/기계공학과 위스콘신 주립대, 미국)
  • Published : 2000.08.01

Abstract

The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

본 연구의 목적은 체적 변형률 (volumetric strain)에 의한 스폰지 뼈의 밀도를 예측하는 것이다. 스폰지 뼈의 내부에서 유체의 흐름을 고려하기 위하여 각각의 normal strain의 합을 체적 변형률로 정의하였다. 체적 변형률의 경계조건에 대한 민감한 반응은 스폰지 뼈의 밀도를 예측하도록 하였다. 이러한 이론적 배경을 유한요소법 (finite element method)에 적용시켜 대퇴골 (femur)과 척구 (spine)의 스폰지 뼈에서의 밀도를 예측하였다. 예측된 뼈의 밀도는 실험적 데이터와 매우 유사하였다. (Wolff 1892, Keller et al. 1989, Codyet al. 1992). 뼈의 밀도의 함수인 뼈의 탄성계수와 강도 또한 실험적 결과와 매우 유사하였다. (Keller et al. 1989, Carter and Hayes 1977). 본 연구에서 정립된 알고리즘은 스폰지 뼈의 밀도를 예측하는데 있어서 수렴성과 민감성이 우수하였다. 따라서 본 연구의 컴퓨터 알고리즘은 스폰지 뼈의 밀도예측에 있어서 매우 유용한 방법이 될 것이다.

Keywords

References

  1. J. of Biomechanics v.18 Frequency Content of Gait E.K. Antonsson;R.W. Mann
  2. J. of Biome-chanical Engineering, ASME v.101 Me-chanical Properties of Human Lumbar Spine Motion Segments-Part II;Responses in Compression and Shear;Influece of Gross Morphology M.H. Berkson;A. Nachemson;A.B. Schultz
  3. J. of Bone & Joint Surgery [Am] v.39 Some Me-chanical Tests on the Lumbosacral Spine with Par-ticular Reference to the Intervertebral Discs T. Brown;R.J. Hansen;A.J. Yora
  4. In Bone: Bone Growth Influence of me-chanical factors on bone formation, resorption and growth in vitro E.H. Burger;J.P. Veldhuijzen;Hall B.K. (ed.)
  5. J. of Biomechanics v.8 A General Com-puting Method for Analysis of Human Loco-motion A. Cappozzo;T. Leo;A. Pedotti
  6. J. of Biomechanics v.22 Relationships between Loading History and Femoral Cancellous Bone Architecture D.R. Carter;T.E. Orr;D.P. Fyhrie
  7. J. of Biomechanics v.20 Mechanical Loading History and Ske-letal Biology D.R. Carter
  8. J. of Bone & Joint Surgery v.59A The Compressive Be-havior of Bone as a Two Phase Porous Structure D.R. Carter;W.C. Hayes
  9. Mechanical Properties of Bone (2ed) The Response of Mature Cortical Bone to Controlled Time varying Loading A.E. Churches;C.R. Howlett;Cowin S.C.(ed.)
  10. 38th Annual Meeting Regional Bone Density Distribution in Female Spines(T6 through L4) D.D. Cody;E.B. Brown;M.J. Fiynn
  11. Bone Mechanics (2ed) S.C. Cowin
  12. Calcified Tissue Interna-tional v.36 Mechanical Modeling of the Stress Ada-ptation process in Bone S.C. Cowin
  13. J. of Elasticity v.6 Bone Remodeling I;Theory of the Adaptive Elasticity S.C. Cowin;D.H. Hegedus
  14. Mecha-nism, Diagnosis and Treatment(4th ed) Low Back Pain J.M. Cox;R.F. Stevens
  15. Annals of Biomedical Engineering v.25 Observation of Convergence and Uniqueness of Node-Based Bone Remodeling Simulations K.J. Fischer;C.R. Jacobs;M.E. Levenston;D.R.
  16. Anatomical Record v.219 Bone Mass and the Mechanostat;A Proposal H.M. Frost
  17. Bone v.15 Failure mechnisms in Human Vertebral Cancellous Bone D.P. Fyhrie;M.B. Schaffler
  18. ASME J. of Biomechanical Engineering v.117 Cancellous Bone Young's Modulus Variation within the Vertebral Body of a Ligamentous Lubar Spine-Application of Bone adaptive Remodeling Con-cepts V.K. Goel;S.A. Ramires;W. Kong;L.G. Gilbe-rson
  19. Acta Orthopaedica Scan-dinavica no.SUP100 Tensile properties of the Human Lumbar Annulus Fibrosis J.O. Grante JO
  20. Spine v.18 Etiology of Spondylolisthesis;Assessment of the Role Played by Lumbar Facet Joint Morpho-logy L.J. Grobler;P.A. Robertson;J.E. Novotny;M.H. Pope
  21. Acta Orthopaedica Scandinavica v.64 Effects of Instability on Bone Healing;Femoral Osteoporosis during its Active Phase O. Grundenes;O. Reikeras
  22. Bone v.7 Reversibility of Nontraumatic Disuse Osteoporosis during its Active Phase Z.F. Jaworski;H.K. Hansson;A.C. Abram;D.N. Spen-gler;M.M. Panjabi
  23. Spine v.14 Regional Variations in the Compressive Properties of Lumbar Vertebral Trabeculae;Effects of Disc Degeneration T.S. Keller;T.H. Hansson;A.C. Abram;D.N. Spengler;M.M. Panjabi
  24. The winter annual meeting of the ASME v.9 Biomechanics of Chemo nucleolysis Y.E. Kim;V.K. Goel
  25. J. of Biomechanics v.17 Static versus Dynamic Loads as an influenceon Bone Remodeling L.E. Lanyon;C.T. Rubin
  26. Spine v.15 Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosis F. Marchand;A.M. Ahmed
  27. Acta Orthopaedica Scandinavica no.SUP 43 Lumbar Intradiscal Pressure A. Nachemson A
  28. Spine v.17 Human Lumbar Vetebrae-Quantitative Three-Dimendional Anatomy M.M. Panjabi;V.K. Goel;K. Takata
  29. Spine v.18 Articular Facets of the Human Spine;Quantitative Three-Dimensional Ana-tomy M.M. Panjabi;T. Oxland;K. Takada;V.K. Goel:J. Duranceau;M. Krag
  30. J. of Biomecha-nics v.21 On the Dependence of the Elasticity and Strength of Cance-llous Bone on Apparent Density J.C. Rice;S.C. Cowin;J.A. Bowman
  31. J. of Biomechanics v.19 A Finite Element Study of A lumbar Motion Segment Subjected to Pure Sagittal Plane Moments A. Shirazi-Adl;C. Suresh;A.M. Ahmed;S.C. Shrivastava
  32. Spine v.19 Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosis D.L. Skaggs;M. Weidenbaun;J.C. Lartridis;a. Ratcliffe;V.C. Mow
  33. J. of Biomec-hanics v.104 Some Static Mechanical Properties of the Lumbar Inte-rvertebral Joint, Intact and Injured A.F. Tencer;A.M. Ahmed;D.L. Burke
  34. J. of Biomechanics v.30 A Uniform Strain Criterion for Trabecular Bone Adap-tation;Do Continuum-Level Strain Gradients Drive Adaptation? C.H. Turner;A. Anner;R.M.V. Pidaparti
  35. ASME J. of Biome-chanical Engineering v.116 Effects of Fit and Bonding Characteristics of Femoral Stems on Adaptive Bone Remodeling H. Weinans;R. Huiskes;H.J. Grootenboer
  36. Clinical Biomecha-nics of the Spine (2nd edition) A.A. White;M.M. Panjabi
  37. The law of Bone Remodeling J. Wolff;Paul Maquer (ed.)