• Title/Summary/Keyword: demand forecasting error

Search Result 117, Processing Time 0.027 seconds

GMDH Algorithm with Data Weighting Performance and Its Application to Power Demand Forecasting (데이터 가중 성능을 갖는 GMDH 알고리즘 및 전력 수요 예측에의 응용)

  • Shin Jae-Ho;Hong Yeon-Chan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.631-636
    • /
    • 2006
  • In this paper, an algorithm of time series function forecasting using GMDH(group method of data handling) algorithm that gives more weight to the recent data is proposed. Traditional methods of GMDH forecasting gives same weights to the old and recent data, but by the point of view that the recent data is more important than the old data to forecast the future, an algorithm that makes the recent data contribute more to training is proposed for more accurate forecasting. The average error rate of electric power demand forecasting by the traditional GMDH algorithm which does not use data weighting algorithm is 0.9862 %, but as the result of applying the data weighting GMDH algorithm proposed in this paper to electric power forecasting demand the average error rate by the algorithm which uses data weighting algorithm and chooses the best data weighting rate is 0.688 %. Accordingly in forecasting the electric power demand by GMDH the proposed method can acquire the reduced error rate of 30.2 % compared to the traditional method.

A New Metric for Evaluation of Forecasting Methods : Weighted Absolute and Cumulative Forecast Error (수요 예측 평가를 위한 가중절대누적오차지표의 개발)

  • Choi, Dea-Il;Ok, Chang-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.159-168
    • /
    • 2015
  • Aggregate Production Planning determines levels of production, human resources, inventory to maximize company's profits and fulfill customer's demands based on demand forecasts. Since performance of aggregate production planning heavily depends on accuracy of given forecasting demands, choosing an accurate forecasting method should be antecedent for achieving a good aggregate production planning. Generally, typical forecasting error metrics such as MSE (Mean Squared Error), MAD (Mean Absolute Deviation), MAPE (Mean Absolute Percentage Error), and CFE (Cumulated Forecast Error) are utilized to choose a proper forecasting method for an aggregate production planning. However, these metrics are designed only to measure a difference between real and forecast demands and they are not able to consider any results such as increasing cost or decreasing profit caused by forecasting error. Consequently, the traditional metrics fail to give enough explanation to select a good forecasting method in aggregate production planning. To overcome this limitation of typical metrics for forecasting method this study suggests a new metric, WACFE (Weighted Absolute and Cumulative Forecast Error), to evaluate forecasting methods. Basically, the WACFE is designed to consider not only forecasting errors but also costs which the errors might cause in for Aggregate Production Planning. The WACFE is a product sum of cumulative forecasting error and weight factors for backorder and inventory costs. We demonstrate the effectiveness of the proposed metric by conducting intensive experiments with demand data sets from M3-competition. Finally, we showed that the WACFE provides a higher correlation with the total cost than other metrics and, consequently, is a better performance in selection of forecasting methods for aggregate production planning.

An Empirical Study on Supply Chain Demand Forecasting Using Adaptive Exponential Smoothing (적응적 지수평활법을 이용한 공급망 수요예측의 실증분석)

  • Kim, Jung-Il;Cha, Kyoung-Cheon;Jun, Duk-Bin;Park, Dae- Keun;Park, Sung-Ho;Park, Myoung-Whan
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.343-349
    • /
    • 2005
  • This study presents the empirical results of comparing several demand forecasting methods for Supply Chain Management(SCM). Adaptive exponential smoothing using change detection statistics (Jun) is compared with Trigg and Leach's adaptive methods and SAS time series forecasting systems using weekly SCM demand data. The results show that Jun's method is superior to others in terms of one-step-ahead forecast error and eight-step-ahead forecast error. Based on the results, we conclude that the forecasting performance of SCM solution can be improved by the proposed adaptive forecasting method.

Load Forecasting and ESS Scheduling Considering the Load Pattern of Building (부하 패턴을 고려한 건물의 전력수요예측 및 ESS 운용)

  • Hwang, Hye-Mi;Park, Jong-Bae;Lee, Sung-Hee;Roh, Jae Hyung;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1486-1492
    • /
    • 2016
  • This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.

Evaluation of short-term water demand forecasting using ensemble model (앙상블 모형을 이용한 단기 용수사용량 예측의 적용성 평가)

  • So, Byung-Jin;Kwon, Hyun-Han;Gu, Ja-Young;Na, Bong-Kil;Kim, Byung-Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

An Empirical Study on Supply Chain Demand Forecasting Using Adaptive Exponential Smoothing (적응적 지수평활법을 이용한 공급망 수요예측의 실증분석)

  • Kim, Jeong-Il;Cha, Gyeong-Cheon;Jeon, Deok-Bin;Park, Dae-Geun;Park, Seong-Ho;Park, Myeong-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.658-663
    • /
    • 2005
  • This study presents the empirical results of comparing several demand forecasting methods for Supply Chain Management(SCM). Adaptive exponential smoothing using change detection statistics (Jun) is compared with Trigg and Leach's adaptive methods and SAS time series forecasting systems using weekly SCM demand data. The results show that Jun's method is superior to others in terms of one-step-ahead forecast error and eight-step-ahead forecast error. Based on the results, we conclude that the forecasting performance of SCM solution can be improved by the proposed adaptive forecasting method.

  • PDF

Forecasting Housing Demand with Big Data

  • Kim, Han Been;Kim, Seong Do;Song, Su Jin;Shin, Do Hyoung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.44-48
    • /
    • 2015
  • Housing price is a key indicator of housing demand. Actual Transaction Price Index of Apartment (ATPIA) released by Korea Appraisal Board is useful to understand the current level of housing price, but it does not forecast future prices. Big data such as the frequency of internet search queries is more accessible and faster than ever. Forecasting future housing demand through big data will be very helpful in housing market. The objective of this study is to develop a forecasting model of ATPIA as a part of forecasting housing demand. For forecasting, a concept of time shift was applied in the model. As a result, the forecasting model with the time shift of 5 months shows the highest coefficient of determination, thus selected as the optimal model. The mean error rate is 2.95% which is a quite promising result.

  • PDF

Product Life Cycle Based Service Demand Forecasting Using Self-Organizing Map (SOM을 이용한 제품수명주기 기반 서비스 수요예측)

  • Chang, Nam-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.37-51
    • /
    • 2009
  • One of the critical issues in the management of manufacturing companies is the efficient process of planning and operating service resources such as human, parts, and facilities, and it begins with the accurate service demand forecasting. In this research, service and sales data from the LCD monitor manufacturer is considered for an empirical study on Product Life Cycle (PLC) based service demand forecasting. The proposed PLC forecasting approach consists of four steps : understanding the basic statistics of data, clustering models using a self-organizing map, developing respective forecasting models for each segment, comparing the accuracy performance. Empirical experiments show that the PLC approach outperformed the traditional approaches in terms of root mean square error and mean absolute percentage error.

  • PDF

Daily Peak Load Forecasting for Electricity Demand by Time series Models (시계열 모형을 이용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jeong-Soon;Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.349-360
    • /
    • 2013
  • Forecasting the daily peak load for electricity demand is an important issue for future power plants and power management. We first introduce several time series models to predict the peak load for electricity demand and then compare the performance of models under the RMSE(root mean squared error) and MAPE(mean absolute percentage error) criteria.