• 제목/요약/키워드: delta set

검색결과 286건 처리시간 0.026초

AN EXTENSION ON GENERALIZED HYPERGEOMETRIC POLYNOMIALS

  • Shah, Manilal
    • Kyungpook Mathematical Journal
    • /
    • 제11권1호
    • /
    • pp.93-99
    • /
    • 1971
  • In this paper, the author has established the formulae for product of two generalized hypergeometric polynomials by defining the polynomial in the form $$F_n(x)=x^{({\delta}-1)n}{_{p+{\delta}}F_q}\[\array{{\Delta}({\delta},-n),&a_1,&{\cdots}{\cdots},&a_p\\&b_1,&{\cdots}{\cdots},&b_q};\;{\lambda}x^c\]$$, where the symbol ${\Delta}({\delta},-n)$ represents the set of ${\delta}$-parameters: $${\frac{-n}{\delta}},\;{\frac{-n+1}{\delta}},\;{\cdots}{\cdots},\;{\frac{-n+{\delta}-1}{\delta}}$$ and ${\delta}$, n are positive integers. A number of known as well as new results have been also obtained with proper choice of parameters.

  • PDF

A Lattice Distribution

  • Chung, Han-Young
    • Journal of the Korean Statistical Society
    • /
    • 제10권
    • /
    • pp.97-104
    • /
    • 1981
  • It is shown that a lattice distribution defined on a set of n lattice points $L(n,\delta) = {\delta,\delta+1,...,\delta+n-1}$ is a distribution induced from the distribution of convolution of independently and identically distributed (i.i.d.) uniform [0,1] random variables. Also the m-th moment of the lattice distribution is obtained in a quite different approach from Park and Chung (1978). It is verified that the distribution of the sum of n i.i.d. uniform [0,1] random variables is completely determined by the lattice distribution on $L(n,\delta)$ and the uniform distribution on [0,1]. The factorial mement generating function, factorial moments, and moments are also obtained.

  • PDF

On Almost Continuity

  • Ekici, Erdal
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.119-130
    • /
    • 2006
  • A new class of functions is introduced in this paper. This class is called almost ${\delta}$-precontinuity. This type of functions is seen to be strictly weaker than almost precontinuity. By using ${\delta}$-preopen sets, many characterizations and properties of the said type of functions are investigated.

  • PDF

FUZZY δ-TOPOLOGY AND COMPACTNESS

  • Lee, Seok-Jong;Yun, Sang-Min
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.357-368
    • /
    • 2012
  • We introduce the concepts of fuzzy ${\delta}$-interior and show that the set of all fuzzy ${\delta}$-open sets is also a fuzzy topology, which is called the fuzzy ${\delta}$-topology. We obtain equivalent forms of fuzzy ${\delta}$-continuity. More-over, the notions of fuzzy ${\delta}$-compactness and fuzzy locally ${\delta}$-compactness are defined and their basic properties under fuzzy ${\delta}$-continuous mappings are investigated.

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.

THE LATTICE DISTRIBUTIONS INDUCED BY THE SUM OF I.I.D. UNIFORM (0, 1) RANDOM VARIABLES

  • PARK, C.J.;CHUNG, H.Y.
    • 대한수학회지
    • /
    • 제15권1호
    • /
    • pp.59-61
    • /
    • 1978
  • Let $X_1$, $X_2$, ${\cdots}$, $X_n$ be i.i.d. uniform (0,1) random variables. Let $f_n(x)$ denote the probability density function (p.d.f.) of $T_n={\sum}^n_{i=1}X_i$. Consider a set S(x ; ${\delta}$) of lattice points defined by S(x ; ${\delta}$) = $x{\mid}x={\delta}+j$, j=0, 1, ${\cdots}$, n-1, $0{\leq}{\delta}{\leq}1$} The lattice distribution induced by the p.d.f. of $T_n$ is defined as follow: (1) $f_n^{(\delta)}(x)=\{f_n(x)\;if\;x{\in}S(x;{\delta})\\0\;otherwise.$. In this paper we show that $f_n{^{(\delta)}}(x)$ is a probability function thus we obtain a family of lattice distributions {$f_n{^{(\delta)}}(x)$ : $0{\leq}{\delta}{\leq}1$}, that the mean and variance of the lattice distributions are independent of ${\delta}$.

  • PDF

Sequential Confidence Set of the Mean Vector of a Multivariate Distribution

  • Kim, Sung Lai
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.87-97
    • /
    • 1992
  • Sequential procedure with ${\beta}$-protection for the mean vector ${\mu}(\theta)$ of a p(> 1)-variate multivariate distribution $P_{\theta}$, ${\theta}{\in}{\Theta}$, with covariance matrix ${\sum}(\theta)$ is considered when the only nuisance parameters is ${\sum}(\theta)$. We obtain a confidence set for ${\mu}(\theta)$ with coverage probability condition and ${\beta}$-protection at ${\mu}-{\delta}(\mu)$ for some imprecision function ${\delta}:\mathbb{R}^p{\rightarrow}\mathbb{R}^p$.

  • PDF

ON THE SET OF CRITICAL EXPONENTS OF DISCRETE GROUPS ACTING ON REGULAR TREES

  • Kwon, Sanghoon
    • 대한수학회지
    • /
    • 제56권2호
    • /
    • pp.475-484
    • /
    • 2019
  • We study the set of critical exponents of discrete groups acting on regular trees. We prove that for every real number ${\delta}$ between 0 and ${\frac{1}{2}}\;{\log}\;q$, there is a discrete subgroup ${\Gamma}$ acting without inversion on a (q+1)-regular tree whose critical exponent is equal to ${\delta}$. Explicit construction of edge-indexed graphs corresponding to a quotient graph of groups are given.

DOMINATION IN GRAPHS WITH MINIMUM DEGREE SIX

  • Jianxiang, Cao;Minyong, Shi;Sohn, Moo-Young;Xudong, Yuan
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1085-1100
    • /
    • 2008
  • A set D of vertices of a graph G = (V(G),E(G)) is called a dominating set if every vertex of V(G) - D is adjacent to at least one element of D. The domination number of G, denoted by ${\gamma}(G)$, is the size of its smallest dominating set. Haynes et al.[5] present a conjecture: For any graph G with ${\delta}(G){\geq}k$,$\gamma(G){\leq}\frac{k}{3k-1}n$. When $k\;{\neq}\;6$, the conjecture was proved in [7], [8], [10], [12] and [13] respectively. In this paper we prove that every graph G on n vertices with ${\delta}(G)\;{\geq}\;6$ has a dominating set of order at most $\frac{6}{17}n$. Thus the conjecture was completely proved.

  • PDF

지배집합 알고리즘 (A Dominating Set Algorithm)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권9호
    • /
    • pp.121-129
    • /
    • 2013
  • 본 논문은 아직까지 정확한 해를 다항시간으로 구하는 알고리즘이 존재하지 않아 NP-완전 문제로 알려진 지배집합 (DS) 문제의 정확한 해를 선형시간으로 구하는 알고리즘을 제안하였다. 제안된 알고리즘은 그래프의 간선이 존재하지 않을 때까지 최소차수 ${\delta}(G)$를 가진 정점 u의 인접정점들 중 최대차수 ${\Delta}(G)$를 가진 정점 v를 최소 독립지배집합(MIDS)의 원소로 포함시키고 v의 부속 간선을 삭제하는 방법을 반복적으로 수행하여 구하였다. MIDS로부터 최소 지배집합 (MDS)으로 변환시키고, MDS로부터 최소연결 DS (MCDS)로 변환시키는 방법으로 DS 관련 모든 문제의 정확한 해를 구할 수 있었다. 제안된 알고리즘을 10개의 다양한 그래프에 적용한 결과 정확한 해를 선형 시간복잡도 O(n)으로 구하는데 성공하였다. 결국, 제안된 지배집합 알고리즘은 지배집합 문제가 P-문제임을 증명하였다.