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DOMINATION IN GRAPHS WITH MINIMUM DEGREE SIX

CAO JIANXIANG*, SHI MINYONG, MOO YOUNG SOHN AND YUAN XUDONG

ABSTRACT. A set D of vertices of a graph G = (V(G), E(G)) is called
a dominating set if every vertex of V(G) — D is adjacent to at least one
element of D. The domination number of G, denoted by 4(G), is the size
of its smallest dominating set. Haynes et al.[5] present a conjecture: For
any graph G with 6(G) > k, 7(G) < 3k’“_1n. When k # 6, the conjecture
was proved in [7], [8], [10], [12] and [13] respectively. In this paper we prove
that every graph G on n vertices with §(G) > 6 has a dominating set of
order at most %n. Thus the conjecture was completely proved.
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1. Introduction

The graphs considered here are finite, undirected, and simple. The set of
vertices and edges of a graph G are denoted by V(G) and E(G), respectively.
The minimum degree of graph G is denoted by §(G). A set D of vertices of a
graph G is called a dominating set if every vertex of V(G) — D is adjacent to
at least one element of D). The domination number of G, denoted by ¥(G), is
the size of its smallest dominating set. It has been proved [4] that the decision
problem corresponding to the domination number for arbitrary graphs is NP-
complete. Thus, the exploration of lower and upper bounds for the domination
number as sharp as possible is of great significance. In fact, many results on
upper bounds on the domination number in terms of some basic parameters
such as the numbers of vertices and edges, the minimum and maximum degree
and so on, have been obtained. For a survey, we refer the reader to [5]. Haynes
et al.[5] present a conjecture:
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Conjecture 1. For any graph G with §(G) > k, v(G) < k n.

“3k-1

For 6(G) > 1,3, 4,5, Conjecture 1 was partially proved in [8], [10], [12] and [13]
respectively. For §(G) > 2, McCraig and Shepherd [7] proved that 4(G) < 2?77,

except for seven graphs. For 6(G) > 7, Caro and Roditty (see [1], [2]) gave the
following better bound. For any graph G,

YG) < n {1 -5 (ﬁ)lﬁ-%} .

Thus, the question remains open only for graphs G with 6(G) > 6. In this paper
one shall prove the question for §(G) > 6. The following theorem and above
results will complete the proof of Conjecture 1.

Theorem 1. Let G be a graph of order n with §(G) > 6. Then
6
G) < —n.
1(G) <

The proof of Theorem 1 will be completed by choosing a dominating set D of
G based on the so-called vertex disjoint paths cover, which was introduced by
Reed in [10]. In this paper, for z,y € V(G), zy denotes the edge with ends x
and y. If zy € E(G), we say that y is a neighbor of z or y is adjacent to z, and
the set of neighbors of z is denote by N(z), d(z) = |N(z)| is called the degree
of z. A subgraph H is said to be induced by U if V(H) = U and zy € E(H)
if and only if 2y € E(G), z,y € U. The number of vertices of the graph G is
denoted by |V(G)|.

A vertex disjoint paths cover of G, or simply called a vdp — cover, is a set
of vertex disjoint paths Py,---, P such that V(G) = V(P)U---UV(P). A
path P is called a 0—,1— or 2 — path if |P| is congruent to 0, 1 or 2 mod 3,
respectively. For a vdp — cover S of G, let S; (i = 0,1,2) be the set of i-paths
in 8. If P = P'cP", where P’ is an i-path and P” is a j-path (z is on neither
P’ nor P"), then we say z is an (4, j) — vertez of P. Let P € S and z be an
endvertex of P. We say that z is an out-endvertex if it has a neighbor which
is not on P. If P is a 2-path, we say that z is a (2, 2)-endvertex if it is not an
out-endvertex and is adjacent to some (2, 2)-vertex of P.

2. Choose a dominating set

We assume that G is a graph with order n and §(G) > 6. For convenience,
we assume that G is connected. We first choose a vdp — cover § of G such that
(1)  2|S1]| + |92 is minimized.
(2) Subject to (1), |S2| is minimized.
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(3) Subject to (2), Z | P;| is minimized.
F€50
(4) Subject to (3), Z | P;| is minimized.
P;eS
Let = be an out-endvertex of F; € §; US; and y be a neighbor of x on some
path P; distinct from P;. Let P; = PjyP;, then we have the following assertion
(for the proof, see [10], Observation 1-3).

Assertion 1. P; is not a 1-path. If P; is a O-path, then both P and P are
1-paths; if P; is a 2-path, then both P; and Pj' are 2-paths.

Having chosen the minimal vdp — cover S = {P,- -, Py}, we rearrange the

paths of S to obtain a new vdp — cover §' = {P{,---, P(} such that:
(i)P/(1 < i < k) is a Hamiltonian path in G[P);
(ii) subject to (i), the number of out-endvertices in 9’ is maximized;
(iif) subject to (ii), the number of (2, 2)-vertices in S’ is maximized.

Clearly, S is still minimal with respect to the above conditions. For conve-
nience, we still denote the new vdp — cover of G by S.

If a 1-path P in S has at least one out-endvertex, then we choose an out-
endvertex z of P and a vertex y ¢ P which is adjacent to z, we say that y is
the acceptor for P. If a 2-path P in S has two out-endvertices, then for each of
the two out-endvertices, we choose a vertex of V(G) — V(P) which is adjacent
to it and designate it as the acceptor corresponding to the out-endvertex. If a
2-path P in S which has precisely one out-endvertex x and |P| < 14, we choose
a vertex y ¢ P which is adjacent to z and designate y as the acceptor for P.
We call a path in S accepting if it contains an acceptor. Now we specify a set
A C § of 2-paths. Initially, let A be the set of accepting 2-paths. While there is
any out-endvertex z of a path in A for which we have not chosen an acceptor,
we choose a neighbor of this endvertex in V(G) — V(P) and designate it as an
acceptor for z. If this new acceptor is on a previously non-accepting 2-path P/,
then we add P’ to A. We continue this process until there is an acceptor for
every out-endvertex of the paths in A. In addition, for any (2,2)-endvertex
of any path P in A, we choose a (2, 2)-vertex y of P which is adjacent to z and
designate y as an nacceptor for z.

For any accepting 2-path P, we partition P = Py PyPs such that P; and P
are maximal 1-paths which contain neither acceptors nor inacceptors. We say
that P, and P; are tips of P and P is its central path. By the maximality of
Py, Ps, and by Assertion 1, if z € P, is adjacent to an endvertex of Py, then it is
an acceptor or an inacceptor. Before the description of choosing the dominating
set, one present the following assertion.

Assertion 2. Let P € S be a 2-path with at most one out-endvertez. If
|P| < 14, then all vertices of V(P) except for the possible out-endvertez can be

P|

dominated by 3 vertices.
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One will prove Assertion 2 in section 3. Now one choose a dominating set D
of G in the following manner:

Step 1:  For each 0-path P, we put every (1,1)-vertex of P in D.
Step 2:  For each accepting 2-path P, we put into D every (2,2)-vertex of
P which is in the central path of P .

P
Step 3:  For each 1-path P with at least one out-endvertex, we choose \_I_E),—IJ

vertices of P which dominate all of the vertices of P except for the endvertex
of P which is adjacent to the acceptor of P. We put these vertices in D. For

|P]

each non-accepting 2-path P with two out-endvertices, we choose [—J vertices

of P to dominate its interior vertices. We put these vertices in D. For each
non-accepting 2-path P which has precisely one out-endvertex z and |P| < 14,

1Pl

vertices of P except for the endvertex x of P which is adjacent to the acceptor
of P. We put these vertices in D.

Step 4: For each 1-path P with no out-endvertex, we choose a subset of
V(P) which dominate V(P) and put it in D. If possible, we choose a set of

1P|

P
U—lJ vertices; otherwise we choose a set of [—J + 1 vertices. For each non-

By assertion 2, we can choose { J vertices of P which dominate all of the

accepting 2-path P with at most one out-endvertex and |P| > 11, we choose a
subset of V(P) which dominate V(P) and put it in D. If possible, we choose a

|P|

. . P .
set of [?J vertices, otherwise we choose a set of [———-‘ vertices.
Step 5: For each tip P; of an accepting 2-path P, if the common endvertex

5]

z of P; and P is adjacent to a vertex chosen in step 1 or 2, we choose l

of vertices of P; which dominate the remaining vertices of P; and put them in
D. If z is not adjacent to a vertex chosen in step 1 or 2, we choose a set which

P,
dominates P; and put it in D. If possible, we choose [MJ vertices, otherwise

3
P
we choose [1—31” + 1 vertices.

It is easy to see that D is a dominating set of G (see [10], Observation 5-8).

To calculate the size of D, we define the following sets.
(i) O1: the set of 1-paths P which either have at least one out-endvertex or

P
contain a dominating set of size L13—|J

(i) Oq: the set of non-accepting 2-paths P which have two out-endvertices

1P|

or contain a dominating set with size {—J that dominates all the vertices of
P, and all non-accepting 2-paths which have precisely one out-endvertex and
|P| < 14.

(iii) I: the set of 1-paths not in O;.
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(iv) Ip: the set of non-accepting 2-paths not in Os.
(v) E: the tip T of an accepting 2-path P is in FE if and only if the corre-
sponding endvertex of P is neither an out-endvertex nor a (2, 2)-endvertex and

(vi) W: the set of (2,2)-endvertices of accepting 2-paths for which we have
chosen an inacceptor.
Then, the size of D can be calculated easily as

D| = let Z|P| lel‘l‘? Z|P|+1

we cannot dominate T' by using [ J vertices.

PcOy PeOo Pely Pely
1P| |Pl-2 I
I e L]
PeS, PecA
Equivalently,

n 1 2 2 1 2
|D| = 3~ glOll - §|02| + glfll + §|12| - §|A| +|E|.

Note that each accepting 2-path corresponds to an endvertex of some path in
01 U Oz or to an endvertex of an accepting 2-path of A which is not in EU W,
Thus, we have |A| < |O1] + 2|02] + 2|4| — |E| — |W|, so |E| < |04] +2|02| +
|A| — |W|. Also, |E| < 2|A| — |W]. Thus,

1 E
i< 2+ 24 S+ 2L

To any element T of E there corresponds an accepting 2-path Pr such that
T is a tip of Pr. Now we define a set E', E' C E by saying that each T € E is
in E’ if the endvertex of Pr not in T is not an element of W.

Clearly, |E'| > |E| — |W], and so

n 2 1 1
<_ - . hed f
IDI < 5+ glhl +5lh[+ 5B (+)

3. Proof of Theorem 1

The proof will be completed by a sequence of two lemmas and four assertions.
The following three observations are straightforward to verify.

Observation 1. Let P = 2129 - - Tak+1 (k > 1) be a path. If z1 is adjacent to
a vertez x3; for some 1 <1 <k, then V(P) can be dominated by k vertices.

Observation 2. Let C be a circle with 3k+1 (k > 1) vertices and let L = 212513
be a path such that V(C)NV (L) = 0. If x5 has a neighbor in C, then V(C)UV (L)
can be dominated by k + 1 vertices.
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Observation 3. Let P = x1xo- - Tag—1 (k > 1) be a path and let z ¢ P. Ifx is

k
adjacent to one verter of |J{Zai—2,23i—1}, then V(P) U {z} can be dominated
i=1
by k wvertices.

From the above three observations, one shall prove Lemma 1 and Lemma 2.

Lemma 1. Let C = z1z3- ac3k+1:1;1(2 <k <7) bea circle of G, H be a
subgraph of G induced by V(C). For v e V(C), zf in H there is a Hamiltonian
path between v and z3k+1, we have N(v) C V(C), then H can be dominated by
k vertices.

Proof. If k = 2, the conclusion is obvious. Here we only prove the case for k = 7,
the cases for 3 < k < 6 can be proved by similar reasoning and omitted.

When k = 7, then C = 212 -+ -T2271. Let CT = 1320+ T99, for 1 <4 <
j < 22, let :c,C’*’a:J (or £;C~x;) denotes the path between z; and z; of CF
(both z; and z; are contained). We prove by contradiction, assume H can not
be dominated by k vertices. We first check the neighbors of x;, then deduce a
contradiction.

Obviously, there are Hamiltonian paths between z; and z42, 221 and 222 in H,
so we have N(z1) C V(C), N(z21) C V(C), by Observation 1, z; is not adjacent
to z3;(1 < i < 7), by symmetry, za; is not adjacent to z3;41(0 <4 < 6). In the
following, we check the neighbors of z1.

Case 1. 1 is not adjacent to z1q.

We prove by contradiction. Assume z; is adjacent to 219, now we check the
neighbors of z21, then deduce a contradiction.

For 290Z21Z22 and the circle z1Ct 11071, by Observation 2, zo1 is not adjacent
to the circle. So,

N(z21) — {20, 222} C {Z11, T12, T14, T15, T17, T18}-

Since d(z21) > 6, then z; must be adjacent to both z1; and z12, or both z14
and 215, or both z;7 and 21s.

Firstly, if 221 is adjacent to both z1; and 12, then there is a Hamiltonian
path 213CT201712C 21392 , s0 N(z13) C V(C), for z12213214 and the circle
z1Ct 11201
T29T1, by Observation 2, z13 is not adjacent to the circle. By Observation 1, z13
is not adjacent to 215 or z1s. So N(z13) C {216, Z17, Z19, Z20}. Since d(z13) > 6,
then 13 must adjacent to all vertices of {z16,217,%19,220}. Now there is a
Hamiltonian path

7152147135160 2213120~ 21222,
so, N(z15) € V(C). For 14215716 and the circle z;CTx13217C 29221, by
Observation 2, z15 is not adjacent to the circle, this means d(z15) < 5, a con-
tradiction. So zo; is at most adjacent to one of {z11, 12}
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Secondly, by similar reasoning, z9; is at most adjacent to one of {z14,Z15},
or at most one of {z17,z1s}. This means d(zs,) < 5, a contradiction. So z; is
not adjacent to 3. This proves Case 1.

By similar reasoning, z; is not adjacent to the vertex of {z13, Z16,Z19}.

Case 2. x, is not adjacent to z11.

We prove by contradiction. Assume z; is adjacent to z1;, now z; dominates
To, Tag and Ty, for z21 and the path 23C* 19, by Observation 3, we have

N(z21) — {20,222} C {22, 25,28, T11, Z12, T14, T15, T17, L18}-

Case 2.1. x9; is not adjacent to zs.

Assume z2; is adjacent to T2, now z9; dominates zqg, £22 and za, for z; and
the path 23CF 219, by Observation 3, we have N(z1) C {zs, T3, 11, T14, T17, T20}-

Firstly, if z; is adjacent to x5, there is a Hamiltonian path z3C* 212921229,
80 N(z3) C V(C). For zoz3z4 and the circle z5Ct 2901125, by Observation 2,
73 has no neighbor in z5C % 2992175, a contradiction to d(z3) > 6. So z; is not
adjacent to x5, by similar reasoning, 1 is not adjacent to zg. Then z; must be
adjacent to all the vertices of {11, 14, Z17, Z20}.

Secondly, z; is adjacent to all the vertices of {z11, Z14, Z17, T20}.

Now there is a Hamiltonian path z19C™21Z20%21222, s0 N(z19) C V(C).
For x18T19T20 and the circle oCt x172172272172, by Observation 2, z19 has no
neighbor in the circle, a contradiction to d(z19) > 6, so z; is not adjacent to all
the vertices of {11,214, %17, 220}, This means d(z1) < 6, a contradiction. This
proves Case 2.1. by similar reasoning, z9; is not adjacent to x5 or zg. So

N(z91) — {z20, Z22} € {®11, 212, Z14, T15, T17, T18}-

Case 2.2. x91 is at most adjacent to one of {11, z12}.

Assume 197 is adjacent to both z1; and z1g, there is a Hamiltonian path
(z13C 29y
21207 2122, s0 N(z13) C V(C). For 212213214 and the circle z; Ct 1122120071,
by Observation 2, z13 has no neighbor in the circle, and by Observation 1,
z13 must be adjacent to all the vertices of {z16, 217, Z19, Z20}, then there is a
Hamiltonian path

T15214213216C T 221712C ~ 71722,

80 N(z15) C V(C). For 14715716 and the circle £1Ctx13217C 12271, by Ob-
servation 2, z15 has no neighbor in the circle, a contradiction to d(z15) > 6.
This proves Case 2.2. By similar reasoning, xq; is at most adjacent to one of
{z14, 215} or at most one of {z17,z18}.

From the Case 2.1 and Case 2.2, we have d(z31) < 5, a contradiction. So z;
is not adjacent to z1;. This proves Case 2. By similar reasoning as Case 2, 2,
is not adjacent to the vertex of {z14, 217,220}
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Case 8. 1 is at most adjacent to one of {x4,z5}.

Assume z; is adjacent to both z4 and x5, then there is a Hamiltonian path
737271 74C  T29, 50 N(z3) C V(C). For zoz3z4 and the circle 25C 1992125, by
Observation 2, z3 has no neighbor in the circle, a contradiction to d{zs) > 6.
This proves Case 3. By similar reasoning, z; is at most adjacent to one of

{z7, s}
From the above three cases we have d(z;1) < 5, a contradiction. This proves
Lemma 1. O

Lemma 2. Let C = x123-- 234221 (2 < k < 7) be a circle of G, H be a
subgraph of G induced by V(C). For v € V(C), if in H there is a Hamiltonian
path between v and T3gi2, we have N(v) C V(C), then V(C) — {z3k+2} can be
dominated by k vertices.

Proof. When k = 2, the conclusion is obvious. We only prove the conclusion
for k = 7. The proof of other cases is similar and thus omitted.

When k = 7, C = 129+ Zo3zy. Similarly, let Ct = zym9---293. For
1 <i<j< 23 z;,Ctz; or 2;C~2z; denotes the path between z; and z; of
C*(z; and z; are contained).

We prove by contradiction. Assume V(C) — {z3k+2} can not be dominated
by k vertices. First we check the neighbors of z1, then deduce a contradiction.

Since there are Hamiltonian paths between x; and za3, 92 and a3, we have
N(z1) C V(C) and N(z22) C V(C). Noted that z; and zsy are symmetrical
about z93 on C, so the properties about the neighbors of x; are the same as the
neighbors of z9o. By Observation 1, z; is not adjacent to z3x(1 < k < 7), and
symmetrically, zo2 is not adjacent to z3x_1(1 <k < 7).

Case 1. 1z is not adjacent to xos.

Assume z; is adjacent to zg2, now in H there are Hamiltonian paths between
z2 and o3, T21 and z23, this is similar to the Lemma 1, so by the similar proof
of Case 1-2 of Lemma 1 we get

N(z1) — {2, x23, T22} C {24, %5, 7,28},

similar to the proof of Case 3 of Lemma 1, we get x; is at most adjacent to one
of {14, x5}, or at most adjacent to one of {z7,zs}. This means d(z1) < 5, a
contradiction.

By similar reasoning as the proof of Lemma 1 we have z is not adjacent to
the vertex of {213, Z16,Z19}. By symmetry, z22 is not adjacent to the vertex of

{xlv T4y T7,4 xlO}-

Case 2. 17 is not adjacent to zog.
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Assume z; is adjacent to z2, then z2y dominates {1, Z19, Z21}, for z22 and
the path z3CTz1g, by Observation 3,

N(z22) — {z21, T23} C {z13, T16, T19}.
This is a contradiction to dgog > 6. This proves Case 2.
By the same reagson as Case 2, z; is not adjacent to z14 or z17. By symmetry,

N(za2) — {z21, 223} C {Z12, T13, T15, Z16, T18, T10}-

Case 3. z; is at most adjacent to one of {z19,z11}.
Assume z; is adjacent to both z1g and z11, now we check the neighbors of
L9292

Case 8.1. x99 is at most adjacent to one of {z12, 213}

If x99 is adjacent to both z12 and z3, then there is a Hamiltonian path
221C ™ 213%22212C " T1%23, 50 N(z21) C V(C). For zgor21222 and the circle
11C*tz1971, by Observation 2, 41 is not adjacent to the circle. And by Obser-
vation 1, we have

N(x21) — {®20, x22} C {212, T14, T15, T17, T18, T23}-
Now we check the neighbors of ;.
Case 8.1.1. 1z is at most adjacent to one vertex of {12, z23}.

Assume z9; is adjacent to both x12 and x93, there is a Hamiltonian path
114CT 90
713C " T1%23, for 13214715 and the circle z,C 19z, by Observation 2, zy4 is
not adjacent to the circle. By Observation 1,

N(3314) - {9313,5615} c {7312,5617,5618,51620,3721,3323}-

Firstly, if 214 is adjacent to £12, then there are 7 vertices {zq, x5, T3, £11, Z12, T16,
x19} dominate V(C)—{z23}, this is contrary to the supposition that V(C)—{z23}
can not be dominated by 7 vertices. So z14 is not adjacent to z1s.

Secondly, if 14 is adjacent to zag, for £13T20z2; and the circle £14Ct Tz 14,
by Observation 2, x99 is not adjacent to the circle, then

N(za2) — {z21, 223} C {212, Z13},

a contradiction, so z14 is not adjacent to x90.

Similarly, z14 is not adjacent to z17.

This means d(z14) < 5, a contradiction. So z2; is at most adjacent to one
vertex of {z12,223}. This proves Case 3.1.1.

Case 3.1.2. x9) is at most adjacent to one vertex of {x17,z1s}.
Assume z9; is adjacent to both z17 and s, then there is a Hamiltonian path

T19T20221218C "~ T13T22%12C " T1L23,
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for 181920 and the circle .’L‘10+.’IJ10$1 or the circle I130+$17(L‘21£E22$13, by
Observation 2, 19 is not adjacent to the circles, this means d(z19) < 5, a con-
tradiction to d(z19) > 6. So z21 is at most adjacent to one vertex of {17, Z1s}.

Similarly, zo; is at most adjacent to one vertex of {14, Z15}.

From the two cases 3.1.1-3.1.2, we get d(xq1) < b, a contradiction. So zgg is
at most adjacent to one of {z12,213}. This proves Case 3.1.

By similar reasoning, we have zq is at most adjacent to one vertex of {z15, 16},
or one of {z1g,z19}. This means d(z22) < 5, a contradiction. So z; is at most
adjacent to one of {z19,z11}. This proves Case 3.

By similar reasoning as Case 3, z; is at most adjacent to one of {z4,z5} or
one of {z7,zs}.

From Case 1-3, we get d(z1) < 5, a contradiction. This proves Lemma 2. [

A lasso L is defined as a graph formed by identifying any vertex in a circle C
with an endvertex of a path P. The other endvertex of the path P is called the
end of L and the common vertex of C' and P is called the connecting vertex of
L. Especially, a cycle can be regarded as a lasso.

Assertion 3. Let P € S be a 2-path with at most one out-endvertez. If |P| < 14,
then all vertices of V(P) except for the possible out-endvertez can be dominated

by U—?J vertices.

Proof.  If [V(G)| = 14, then the conclusion is immediate. We may assume
that |V(G)| > 14. Let P = 2122 - - Z3m42 (2 < m < 4) be a 2-path in S with
at most one out-endvertex. Let H be a subgraph of G induced by V(P). Since
d > 6, when |P| = 8,11, the conclusion is obvious, so in the following we prove
only |[P|=14,ie., P=zi122" " Z14.

Case 1. P has no out-endvertex.

As G is connected, there is at least one edge between V(P) and V(G) -V (P).
If there is a Hamiltonian circle of H, then each vertex of H is an out-endvertex
of some Hamiltonian path, a contradiction. So there has no Hamiltonian circle
in H.

Now we choose a lasso L in H such that the number of vertices on the circle
of the lasso is maximum. For convenience, we label the vertices of L along a
Hamiltonian path on L from the end of L as x4, 213, , 22, Z1. Since z; and
214 are not out-endvertices, so z1 and x4 are only adjacent to the vertices of
P. As there has no Hamiltonian circle in H, z; is not adjacent to z14, and
d(z1) > 6, let u be the connecting vertex of the lasso, we have

u € {x7, T3, Tg, T10, T11, T12, L1},

by the labeling, z1 is adjacent to u.
In the following, we prove only u = z13 because the proof of the other can be
done in a similar way.
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Case 1.1. When u = 213.

We prove by contradiction, assume V' (P) can not be dominated by 4 vertices.
We check the neighbors of z;.

Case 1.1.1. 1z is not adjacent to xg.

Firstly, if z1 is adjacent to zg, we check the neighbors of x14. Now x5 is an
endvertex of a Hamiltonian path 25C~z,206C 1 T13%14, S0 by the choice of the
circle of L, 114 is not adjacent to xs.

Secondly, as z; dominates {23, zs, 213}, if 14 is adjacent to one of {z4, s, 11},
then {z1,z4, 23,211} dominate V(P), this is contrary to the supposition that
V(P) can not be dominated by 4 vertices.

Finally, since z¢ dominate {z1,zs,2+}, if 14 is adjacent to one vertex of
{zs, 6, T9, T12}, then {z3, z¢, 9, 212} dominate V(P), a contradiction.

So N(z14) C {z2, 27,210,713}, this means d(z14) < 4, a contradiction to
d(z14) > 6. So x; is not adjacent to zg. By similar reasoning, x; is not adjacent
to the vertex of {z3,z9,z12}. So z1 is adjacent to at least four vertices of

{x4, x5, 27, 28, T10, 211}

Case 1.1.2. z; is at most adjacent to one of {z4, x5}

Now there is a Hamiltonian path 2,C*z4z125C 1213214, s0 N(z2) C V(P),
and by the choice of the circle of L, we have x5 is not adjacent to z14. Since z4
dominates {z1, 3, z5}, for z2 and the path 2¢C1x13, by Observation 3, we have

N(zz) — {z1,23} C {z5, 28,211},

this means d(z3) < 5, a contradiction.

By similar reasoning, z; is at most adjacent to one of {z7,zs}, or one of
{10,711}

From Cases 1.1.1-1.1.2, we get d(z1) < 5, a contradiction. This completes
Case 1.

Case 2. P has precisely one out-endvertex.

When P has precisely one out-endvertex, assume 214 is an out-endvertex of
P, as z; is not an out-endvertex, x; is only adjacent to the vertices of P.

Similarly as Case 1, we choose a lasso L in H such that the vertices on the
circle of the lasso is maximum, let C be the circle of the lasso, and z;4 be an
out-endvertex of the lasso. For convenience, we label the vertices of L along a
Hamiltonian path on L from the end of L as z14,- -+ , 1. Let u be the connecting
vertex. By the labeling, z; is adjacent to wu.

We prove by contradiction. By proposition 1, z; is not adjacent to z3;(1 <
i < 4), 80 U = Tag41 OF T3g42 (2 < k < 4). Assume z; € V(C), Noted that if
there is a path from z; to u that all the vertices of C' are on the path, then there
is a Hamiltonian path from z; to 14, thus N(z;) C V(C), i.e, the vertex of C
satisfy the conditions of Lemma 1 or Lemma 2, so by Lemma 1 or Lemma 2, we
have the conclusion. O



1096 Cao Jianxiang, Shi Minyong, Meo Young Sohn and Yuan Xudong

Assertion 4. Let T € E' be a tip of a 2-path P in A. If |T| < 22, then T can

T

be dominated by [?IJ vertices.

T
Proof. We prove by contradiction, assume T can not be dominated by [I-EJ)——IJ
vertices, then deduce a contradiction.

Let T'=ag---ai € E' be a tip of 2-path P, C = ¢p - - - ¢; be a central path of
P. Assume ¢y is adjacent to ax on the path P, by definition, ¢; is an acceptor or
inacceptor. As T € E’, there is not (2, 2)-endvertex in P, so c; is an acceptor.
We first present a Claim proved by Reed (for the proof, see [10] p285, Fact 11).

Claim 1.  ag is only adjacent to the vertex of V(T') U {co}.

If af - - - a}, is a Hamiltonian path on V(T') such that aj, is adjacent to cg, then
by the choice of S, af also is only adjacent to the vertex of T'U {co}.

As T is 1-path, then |T'| = 3m + 1(0 < m < 6). Let H be a subgraph of G
induced by V(T) U {co}. As ao is only adjacent to the vertex of V(T) U {co},
there is a lasso in H with one endvertex cg. Now we choose a lasso L in H
such that the number of vertex on the circle of the lasso is maximum, and cg
is an endvertex of the lasso (perhaps there is a Hamiltonian circle of H). We
label the vertices of L along a Hamiltonian path on L from the end of L as
CoT3m+1 " L1, (1 £m < 6). Let u be the connecting vertex, by the labeling, ;
is adjacent to u, by Observation 1, z; is not adjacent to z3x(1 < k < m < 6).
Since d(z1) > 6 and z; is not an out-endvertex, then u = Z3x41 or u = Tag42,
where 2 < k < m < 6. Designate the circle of L as C, similarly we can deduce
that the vertices of C satisfy the conditions of Lemma 1 or Lemma 2, so by
Lemma 1 or Lemma 2, we have the conclusion that V(T') can be dominated by

7]

l—3—J vertices, a contradiction. O

Assertion 5.  Let P € S be a I-path with no out-endvertez. If |P| < 31, then
|P|

P can be dominated by LTJ vertices.
Proof. Here we only prove |P| = 31, the other cases can be proved by similar
reasoning and omitted. Let H be a subgraph of G induced by V(P).

Case 1. When |V(G)| = 31 and there has a Hamiltonian circle in G.

If |[V(G)| = 31 and there has a Hamiltonian circle in G, G = H, by Lemma 1,

3

G can be dominated by 10 vertices, as 10 < ?—: = 6—>1<—7—1, This satisfies Theorem
1.

Case 2. When |V(G)| > 31 and there has no Hamiltonian circle in H.

If [V(G)| > 31 and there has a Hamiltonian circle in H, since P has no out
endvertex, this is contrary to that G is connected. So in the following, we always
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assume |V(G)| > 31 and there has no Hamiltonian circle in H. We prove by
P
contradiction, assume P can not be dominated by [L:-))WIJ vertices.

Now we choose a lasso L in H such that the number of vertices on the circle
of the lasso is maximum, z3; is an endvertex of the lasso. For convenience, we
label the vertices of L along a Hamiltonian path on L from the end of L as
T31Z30- -+ T1- Let u be the connecting vertex, by the labeling, x; is adjacent to
u. P

We prove by contradiction, assume P can not be dominated by [——lJ vertices.

By Observation 1, z; is not adjacent to z3;, (1 < ¢ < 10), by the choice of
the circle of L, z1 is not adjacent to x31, since d(z1) > 6 and z; is not an
out-endvertex, then u = Z3g+1 or T3k+2, (2 < k < 10). Let C be the circle of
the lasso. When k < 7, the vertices of C satisfy the conditions of Lemma 1 or

P
Lemma 2, so by the Lemma 1 or Lemma 2, we have [%J vertices dominate

V(P), a contradiction. Thus, assume k > 8, for convenience, we denote C+ =
T1xg--x31. For 1 <4 < j < 31, let 2;C%x; (or ;0 x;) denote the path
between z; and z; of C*( both z; and z; are contained). Here we only prove
k = 8, i.e., u = Z95, the other cases can be similarly proved and omitted.

When u = z3x41 = 25, by the choice of the lasso, z; is not adjacent to the
vertex of {z26, Ta7, - ,x31} (otherwise there is a longer circle). So

N(z1) — {z2, 225} C {z4, T5, T7, T8, T10, T11, T13, T14, T16, T17, T19, T20, £22, T23}-

Now we check the neighbors of z31. Since z3; is not an out-endvertex, za; is
only adjacent to the vertices of P. By the choice of the lasso, z3; is not adjacent
to the vertex of {z1, 2, -, x¢}, by symmetry, z3; is not adjacent to the vertex
of {19, %20, , 224}, by Observation 1, z3y is not adjacent to the vertex of
{8, x11, 14, T17, T2, Tag}. Thus,

N(-'L'31) - {9530} - {11«‘7, Z9, %10, %12, %13, X15, L16, 9618} U {9325, 27, $28}~

Case 2.1. z3; is not adjacent to z7.

If 231 is adjacent to z7, now we check the neighbors of z;. By the choice of
the lasso, z; is not adjacent to the vertex of {xs,---,z13}.

Case 2.1.1. 1z is not adjacent to z99.

If z; is adjacent to xeq, since zq4 is an endvertex of a Hamiltonian path of
H, so N(z24) C V(P), for zasz24%25 and the circle £1C*rqoz1, by Observation
2, z24 is not adjacent to the circle, this means d(z24) < 5, a contradiction. So
z1 is not adjacent to zaq, similarly, 1 is not adjacent to x4 or 9.

Cuase 2.1.2. 1z is not adjacent to zo3.
Now we check the neighbors of x44.
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Firstly, by Observation 1, x24 is not adjacent to x97, 230 and z3;4+1,(0 <i <
7).

Secondly, by the choice of the circle of L, 24 is not adjacent to the vertex of
II}10+$6 and {:1725, .. '11731},

Finally, since z1 dominates {z2, 23, 25}, for z24 and the path z3CTxo, by
Observation 3, we have x4 is not adjacent z3; and x3;41, 0 <t <7,

So N(z24) C {xs, z11, T14, Z17, T20}. If 224 is adjacent to zg9, then there is a
Hamiltonian path 2990~ 21223224225 - - - Z31, 50 N(z24) C V(H), for z21220723
and the circle £1Ct 22972472571, by Observation 2, zo9 is not adjacent to the
circle, this means d(zg2) < 5, a contradiction. So a4 is not adjacent to za,
similarly, z24 is not adjacent to z17, this means d{x24) < 5, a contradiction. So
x1 is not adjacent to zo3. similarly, x; is not adjacent to z¢ or zi7.

Combining with Case 2.1.1, since d(z;) > 6, then z; must be adjacent to the
four vertices of {z4, x5, z7, 14}

Case 2.1.3. 1 is at most adjacent to three vertices of {4, x5, 27, T14}.

If z; is adjacent to all vertices of {z4, 5,27, z14}. Now there is a Hamilton-
ian path z3zez124C T T25- - - 231, s0 N(z3) C V(H). For zazsz4 and the circle
z5Ctzosz125, by Observation 2, z3 is not adjacent to the circle, this means
d(z3) < 5, a contradiction.

So x3; is not adjacent to xz7, This proves Case 2.1.

Similarly, z31 is not adjacent to x19 or x13. By symmetry, z3; is not adjacent
to the vertex of {Ilg, 15, 1?12}.
So

N(z31) — {z30} C {z9, T16, Tas5, T27, Tag}-
Since d(z31) > 6, 231 must be adjacent to all vertices of {zg, Z16, Z25, T27, T2s}-

Case 2.2. 131 is at most adjacent to one vertex of {za7, 2g}.

Assume x3; is adjacent to both 227 and z95. Now there is a Hamiltonian path
TogT30T31%0s - - - L25C " Z1, 50 N(ze9) C V(H). Since zg7 dominates z26 and 31,
for zogTa9z30 and the circle C, by Observation 2, xag is not adjacent to C, this
means d(Zz29) < 5, a contradiction.

From Cases 2.1-2.1, we get d(z31) < 5, a contradiction. This proves Case 2.
It completes Assertion 4. d

Now by using the three assertions we deduce Theorem 1. By Assertion 2 and
Assertion 4, if P € I, then |P| > 17. If P € I, then |P| > 34. Hence

> |P| > 34]1);

Pely

S [P > 17|13,

Pel,
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By Assertion 3,

> P> 26|E].
PeA
So we have n > Z |P}+ Z |P| + z |P| > 34| 11| + 17|12 + 26| E|,
P€I1 P€I2 PeA 6
ie, — 51 > —|11|+ |Izl+ ]E’| Combining with (x), we have |D| < T This

completes Theorem 1.
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