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Abstract

It is shown that a lattice distritution defined on a set of # lattice points L(#, §)= {6,0+1, -,
d+n—1} is a distritution induced from the distritution of convolution of independently and iden-
tically distributed (7.i.d.) uniform [0, 1] radom variatles. Also the m-th moment of the lattice
distribution is obtained in a quite different approach from Park and Chung (1978). It is verified
that the distribution of the sum of # i.i.d. uniform [0,1] random variables is completely deter-
mined by the lattice distribution on L(#,d) and the uniform distribution on [0,1]. The factorial

moment generating function, factorial moments, and moments are also ottained.

1. Introduction

Let X, X, -+, X, be i.i.d. uniform [0, 1] random variables and let f-(x) denote the
probability density function (p.d.f.) of

Sv=3X, LD
For a given & :0<6<1, let L(n, &) denote a set of lattice peints defined by
Ln, d)=1{5,0+1,+,0+n—1}. 1.2
Consider a function f.(x ; §) given by
fn(x : B)Z{fn(x) if x E.L(H, 5) (1. 3)
0 otherwise.

Later, it will be proved that f.(x; 6) is a probability function, and for this reason,
the distribution associated with f.(x ; d) is called the “lattice distribution” on the set
L(n, d).

In this paper the properties of the lattice distribution are studied. In section 2, it is
shown that the lattice distribution can be naturally induced from the distribution of
S., as the conditional distribution of S., given the fractional part of S.. To do this, we
show that f. (x; ) defined by (1.3) is, in fact, a probability function of the lattice
distribution. Section 3 deals with the moments of the lattice distribution.

2. The Derivation of the Lattice Distribution

Lamma 2.1. Let S(3,r,n) be defined by
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$G,r,m = B~ D)@ +n—i),

for any real number 8. Then, we have

Lo ()SQr—qm i r>n
S@,r,m=3
L

r,n=1,2, Q@D

if r=n

if r<n.
Proof. First, note that, for any real number ?

(@—Dr=5 (1 ()er-*
5t g oo
n!

=Z

il

S0, &, n)tx,

*\

Hence, we have

3

[Ce'—l)"—g S(, k, mt+

1 if r=n 2.2
SO, 7, n):{O if »<n.
Now, consider the following relation :
est(et— 1)7._2 Z kl ‘ S(O 7, n)ahtk+r
h=0r=n
= p [ 13 .
—,Z,—_ m[z 5(1)s©,j—i,m] @3
On the other hand,
e&t(ec l)n—z( 1) < )e(ﬁ'ht 2l
:§uﬁnls(5’ ks n) (2. 4)

1t follows from (2.3) and (2.4) that

[Fo()s@riim it r>n
S, r,n)= 1
Lo

if r=n
otherwise.

Note that Lemma 2.1 generalizes the results for =0 in W. Feller (1968), and that
S(0,7,n) is the stirling number of the second kind. The following result is also needed
(see, S.S. Wilks (1962), for example).

Lemma 2.2. For n=2,3, -, let f.(x) be the p.d.f. of the random variable defined
by (1.1). Then, f.(x) is given by
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1 2 (n " e
fn<x>:[‘<7—17§,<‘”(f><x—l>+ L for 0<x<n -

0 otherwise,
where
x,= {x if x>0
0 if x<0.
Now, let W,=[S.] and Y.=S.— W, be the integer part and the fractional part of
S., respectively.
Then, the p.d.f. g.(y) of Y. is given by

g ()= Flf Sy if 0<y<]

0 otherwise.

2.6)

In the sequel, it will be shown that Y. is in fact a uniform random variable on [0, 1].
To this end, we need the following results.
Lemma 2.3. Let S(é,7,#n) be the generalized stirling number of the second kind
defined by (2.1). Then, the following identity holds. .
n
n1S@, 7, =53 -1 (T @+i-ir @7

Proof. The lemma can be proved by the following sequence of identities :

S (e

5 (o () oo
=«'§(Z)5""!S 0, 7—q,m

Hence, the result follows from Lemma 2. 1.
Now, the main result in this section is given in the next theorem.
Theorm 2. 1. For any fixed ¢ : 0<<d<1,

S hali+d =1
Therefore, f.(x :9) can be considered as a probability function on the set L(#, d).
Proof. 1t follows from Lemmas 2.1, 2.2 and 2.3 that
L5t 0= G ER D (f)e b
=S@,n—1,n—1)
=1.

Thus the theorem follows.
It can be easily shown that, for j=0,1,-.-,#—1 and ¢ : 0<{6<1,

P,[W.=j, Yo<81={ fu(j+»dy.

Hence, the results related to the distributions of W, and Y, can be summarized as
follows :
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Corollary 2.1. Let Y,=S,.—[S.] and W,=[S.] be the decimal fractional part and
the integer part of the random variable S, defined by (1.1), respectively. Then,

@) f.(j+0), as a function of j=0,1,---, n—1 and & : 0<<6<(1,is the joint p.d.f. of
W, and Y,,

(b) the marginal distribution of Y, is a uniform distribution on [0, 1]

(©) f.(j+3), as a function of j only, is the conditional probaility function of W,
given Y,=4d.

Remark: Theabove results are interesting in the sense that Y. is uniformly distributed
on [0, 1] as we might expect, and that Y, and W, are dependent contrary to our intuition.

The distribution on the set L(#,d) associated with f,(x :0) defined by (1.3) is
clearly the conditional distribution W,+4§, given Y.=4d. Such a distribution will be
called the “lattice distribution” on the set L(#, ). Note that the distribution of S, is com-
pletely determined by the lattice distribution on L(#,d) and the uniform distribution
on [0,1]. Hence it is worthwhile to investigate the properties of the lattice distribution.

3. Moments of Lattice Distribution.

Lemma 3.1. The f.m.g. function ¢.(¢;3) of the lattice distribution on the set
L(n,8) can be written as

8t D =SAD g ()] Eeoran (-1
SO, n—1—k n—1-7] 3.1
Proof. 1t follows from Lemma 2.2 that the f,m. g. function ¢.(f; d) is given by
=D1gn(t : =E A+, (~ 1 (%) @+j 1"

Therefore, ¢.(f; d) can be obtained as the coefficient of #» ! in the series expansion
of the following function :

S+ (-1 (Do
— A+ S s (~ () + e

i=o0j=i

= TS (D paro-E (D) - piarna e ]

— (1+t>5eu6i§(_t).i(l_J’_t)n-l‘i(eu_l)n"l—i

k!

— 1+t ji:( O A+5" 1 (n—1—! SO, I, n—1— ) ur+/ (R

=ol=0i=0

N8

Hence, (n—D)1¢n(t: ) =+0°Z (" Vo[ B -ty +pmi
(n—1=1 SO, 11~k n—1-7 |
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Lemma 3.2, The m-th (m=1,2,.-:) factorial moment x{; of the lattice distribution

on the set L(n,d) can be written as follows :
(a) For m=n,n+1, -,
gk —1- ! .
-pt=m EE () (1) Gt
SO,n—1—r,n—1—,é*"1(@G6—1)--@—m+h+1)
() For m=1,2,+-,n—1,
n-1 h _ 1 ’ X
D= RS () () i
SO, n—1—r,n—1—)H5*1@—1--(F—m+A+1)
+.§§,<nkl>(nm11])(” 1=p1=1y
S0, n—1—k,n—1—75)8%]
Proof. Note that, for fixed n & j,

Bt =t 2 (1 )[4 § 00D q<’5 25D 4]

~.2.f<nm s —7 ])tm "Z.::.gu<nl:1]—']>
0(0—1D)-(6—m+h+1) i
(m—h)!

Hence, it follows from Lemma 3.1 that

=Dt D=3 35 (" ("1 ) e-1-p1- vy

wex=oi=a m—j
SO,n—1—k n-—1 —j)5k(“
+5 8 s (")

m=l h=0 jmor=o e 7

LDl (SO n 17, n-1- o

@—1)@—m+h+Dtr,
where m An=min(m, n).

Using Lemma 3.2, the m-th factorial moment x{7; can be computed at least for small

m Detailed computations show that, for n> 2,
=D pO=m—DI[(n—1)2-S0, n—1,n—2)]
=Dl (D=1 5O, n-2,n-3)
~ (=21 SO, n-1,n-2+-L5DLY;

+<”51>(n_1)g_(n—Z)(n—Z)!S(O, n-1,n—2)
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+m=3DNI1SO,n—1,n—3).
Since it can be easily shown that, for any positive integer,

S, n+1,m =34,

SO n+2,m=L(Ee gi),
the next theorem follows.
Theorem 3.1. The mean g and the variance ¢® of the lattice distribution on the set
L(n, ) are given by
1=y =12,
ot = — 1
=n/12,
for any #>2,
We note that the mean and the variance of the lattice distribution on the set L(#, d)
is independent of § for #>3,
Theorem 3.2. The m-th factorial moment 4{) of the lattice distribution on the set
L(n,d) does not depend on § for m <n.
Proof. Let cy, ++-, cw denote the constants determined by
x(x—1D-(x—m+1D)=cx+ a2+ +Cut™

for all x. Then, the m-th factorial moment p{"} is given by
M= o aee D (1)@ -
Moo= o1y sl O D72, i)@+j—D
= A E el S v (R et @i
T =D &5, i) oTy y

It can be observed from Lemma 3.2 that x{*} is a polynomial in § with degrees at

LIRS

most m. Now, for fixed #» and m<n—1, let H(@) be the polynomial defined for all
real numbre ¢ such that

H®=Ea L (-D(HEC+D*G+j~D
Then, we have
HO+D—-H® =3~ (1), 2, 0+ @+j—i
— S @+ @+ =D
=50 T (FO+m G rn—iyeio @ iion]

=Eal@m S ()@ +a—i

A=1

— R D)@+,
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By Lemma 2.1,
:Z::(_l)i (7) @+n—Drt=(=1)"" 151

Thus,
HG+1D)~H@) ==+ Sa £~ (1) @+t
= (=" 5aSEG, k)
=0
Therefore,

H()—H)=0 for {=0,1,--, 1,
which implies H(3)—H(0), as a polynomial with degrees less than n, should be ide-

ntically zero. Hence,

my _ , (m)
My 5= Hay0

for all 9 :0<d<1, and for m <n.
It should be noted that the m-th moment 47 is independent of & for m<nm, and
should be identical with the m-th moment of the random vairable S,. The m-th mo-

ments p{7) for n<{4 are tabulated in thable 1.

Table 1. Values of u{"}

" ” 0 1 2 3 4
1 1 e* e* e* e*
2 1 1 e* e, e*
3 1 3/2! 5/21 e3* e;*
4 1 2 13/3! 60/3! e*
e*=or

e*=0""1+(6+1D"(1-9)

e*=[0"'2+(3+1)"(—262+ 25+ 1)+ (5+2)~(5*—25+1)]/2!

ed*:[5"*3+(5+1)"(—353+352+35+1)+(5+2)'(353—652+4)+(5+3)"(~53+352—36+1)J/3!

Remark : The results in this paper suggest a further study on the lattice distribution
on L(n,d). The natural questions are as follows; (a) What would be the limiting
distribution of the lattice distribution as # gets large? (b) What distribution other than
the uniform distribution can be reduced to the same distribution after operating ocon-
volutions and reducing modulo 17
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