• Title/Summary/Keyword: delay-dependent

Search Result 310, Processing Time 0.022 seconds

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation

  • Jeung, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper presents a design method of delay-dependent control for T-S fuzzy systems with time delays. Based on parallel distributed compensation (PDC) and a descriptor model transformation of the system, a delay-dependent control is utilized. An appropriate Lyapunov-Krasovskii functional is chosen for delay-dependent stability analysis. A sufficient condition for delay-dependent control is represented in terms of linear matrix inequalities (LMIs).

Delay-dependent Guaranteed Cost Control for Uncertain Time-delay Systems (불확실 시간지연 시스템에 대한 지연량을 고려한 성능보장 제어)

  • 이영삼;문영수;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.13-13
    • /
    • 2000
  • This paper considers delay-dependent guaranteed cost control for uncertain time-delay systems with norm-bounded parametric uncertainties. A new delay-dependent condition for the existence of the guaranteed cost control law is presented in terms of linear matrix inequalities (LMI). An algorithm involving convex optimization is proposed to design a controller which guarantees the suboptimal minimum of the guaranteed cost of the closed-loop system for all admissible uncertainties.

  • PDF

Delay-dependent and Parameter-dependent Robust Stability for Discrete-time Delayed Uncertain Singular Systems (이산시간 지연 불확실 특이시스템의 지연 종속 및 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.788-792
    • /
    • 2010
  • The problem of delay-dependent and parameter-dependent robust stability condition for discrete-time uncertain singular systems with polytopic uncertainty and interval time-varying delay is considered. A new robust stability condition based on parameter-dependent Lyapunov function is derived in terms of LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general condition for both singular and non-singular systems. A numerical example is presented to demonstrate the effectiveness of the proposed method.

Robust Stabilization of Uncertain Linear Systems with Time-delay

  • Moon, Young-Soo;Park, Poo-Gyeon;Kwon, Wook-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.128-133
    • /
    • 1999
  • This paper presents a new delay-dependent robust stabilization condition for uncertain time-delay systems. An algorithm involving convex optimization is proposed to compute a suboptimal upper bound of the delay such that the system can be stabilized by the controller for all admissible uncertainties. It is illustrated by numerical examples that the proposed delay-dependent controller can be less conservative than previous results. It is also shown that the proposed delay-dependent controller can even capture the delay-independent stability of the system, which is not possible with existing delay-dependent results.

  • PDF

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF

A New Augmented Lyapunov Functional Approach to Robust Delay-dependent Stability Analysis for Neutral Time-delay Systems (뉴트럴 시간지연 시스템의 강인 지연의존 안정성 해석을 위한 새로운 리아프노프 함수법)

  • Kwon, Oh-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.620-624
    • /
    • 2011
  • This paper propose a new delay-dependent stability criterion of neutral time-delay systems. By employing double-integral terms in augmented states and constructing a new Lyapunov-Krasovskii's functional, a delay-dependent stability criterion is established in terms of Linear Matrix Inequality. Through numerical examples, the validity and improvement results obtained by applying the proposed stability criterion will be shown.

Delay-dependent Guaranteed Cost Control for Uncertain State-delayed Systems

  • Lee Young Sam;Kwon Oh-Kyu;Kwon Wook Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.524-532
    • /
    • 2005
  • This paper concerns delay-dependent guaranteed cost control (GCC) problem for a class of linear state-delayed systems with norm-bounded time-varying parametric uncertainties. By incorporating the free weighing matrix approach developed recently, new delay-dependent conditions for the existence of the guaranteed cost controller are presented in terms of matrix inequalities for both nominal state-delayed systems and uncertain state-delayed systems. An algorithm involving convex optimization is proposed to design a controller achieving a suboptimal guaranteed cost such that the system can be stabilized for all admissible uncertainties. Through numerical examples, it is shown that the proposed method can yield less guaranteed cost than the existing delay-dependent methods.

SOLVABILITY OF IMPULSIVE NEUTRAL FUNCTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS WITH STATE DEPENDENT DELAY

  • Karthikeyan, K.;Anguraj, A.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.57-69
    • /
    • 2012
  • In this paper, we prove the existence of mild solutions for a first order impulsive neutral differential inclusion with state dependent delay. We assume that the state-dependent delay part generates an analytic resolvent operator and transforms it into an integral equation. By using a fixed point theorem for condensing multi-valued maps, a main existence theorem is established.

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.