A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza (School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran) ;
  • Lohmann Boris (Institute of Automatic Control, Technical University of Munich) ;
  • Buskens Christof (Center for Industrial Mathematics, University of Bremen)
  • Published : 2007.04.30

Abstract

This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

Keywords

References

  1. B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979
  2. B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic Estimation and Control: A Unified Approach to $H_{2}$ and $H_{\infty}$ Theories, SIAM Studies in Applied Mathematics, New York, 1999
  3. H. Gao, J. Lam, L. Xie, and C. Wang 'New approach to mixed $H_{2}$/$H_{\infty}$ filtering for polytopic discrete-time systems,' IEEE Trans. on Signal Processing, vol. 53, no. 8, pp. 3183-3192, 2005 https://doi.org/10.1109/TSP.2005.851116
  4. P. Apkarian and H. D. Tuan, 'Parameterized LMIs in control theory,' SIAM J. Control Optim., vol. 38, no. 4, pp. 1241-1264, 2000 https://doi.org/10.1137/S036301299732612X
  5. G. Becker and A. Packard, 'Robust performance of linear parametrically-varying systems using parametrically-dependent linear feedback,' Syst. Control Lett., vol. 23, no. 3, pp. 205-512, 1994 https://doi.org/10.1016/0167-6911(94)90006-X
  6. H. R. Karimi, B. Moshiri, P. Jabedar Maralani and B. Lohmann, 'Adaptive $H_{\infty}$-control design for a class of LPV systems,' Proc. of the 44th IEEE CDC and ECC, pp. 7918-7923, Seville, Spain, 2005
  7. J. S. Shamma, and M. Athans, 'Guaranteed properties of gain-scheduled control of linear parameter-varying plants,' Automatica, vol. 27, pp. 559-564, 1991 https://doi.org/10.1016/0005-1098(91)90116-J
  8. G. I. Bara, J. Daafouz, and F. Kratz, 'Parameter-dependent control with $\gamma$-performance for affine LPV systems,' Proc. of the 40th IEEE CDC, Florida USA, pp. 2378-2379, 2001
  9. P. A. Bliman, 'Stabilization of LPV systems,' Proc. of the 42nd IEEE CDC, pp. 6103-6108, 2003
  10. P. A. Bliman, 'A convex approach to robust stability for linear systems with uncertain scalar parameters,' SIAM J. Control Optim. vol. 42, no. 6, pp. 2016-2042, 2004 https://doi.org/10.1137/S0363012901398691
  11. E. Feron, P. Apkarian, and P. Gahinet, 'HAnalysis and synthesis of robust control systems via parameter-dependent Lyapunov functions,' IEEE Trans. on Automatic Control vol. 41, no. 7, pp. 1041-1046, 1996 https://doi.org/10.1109/9.508913
  12. P. Gahinet, P. Apkarian, and M. Chilali, 'Affine parameter-dependent Lyapunov functions and real parametric uncertainty,' IEEE Trans. on Automatic Control, vol. 41, no. 3, pp. 436-442, 1996 https://doi.org/10.1109/9.486646
  13. H. R. Karimi, 'Robust stabilization with $H_{\infty}$ performance for a class of parameter-dependent systems,' Mathematical Problems in Engineering, vol. 2006, Article ID 59867, 15 pages, 2006
  14. H. R. Karimi, 'Robust dynamic parameter-dependent output feedback control of uncertain parameter-dependent state-delayed systems,' J. of Nonlinear Dynamics and Systems Theory, vol. 6, no. 2, pp. 143-158, 2006
  15. P. A. Bliman, 'An existence result for polynomial solutions of parameter-dependent LMIs,' Systems & Control Letters, vol. 51, pp. 165-169, 2004 https://doi.org/10.1016/j.sysconle.2003.08.001
  16. G. Chesi, A. Garulli, A. Tesi, and A. Vicino, 'Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach,' IEEE Trans. on Automatic Control, vol. 59, no. 3, pp. 365-370, 2005
  17. E. Fridman and U. Shaked, 'A new $H_{\infty}$ filter design for linear time delay systems,' IEEE Trans. on Signal Processing, vol. 49, no. 11, pp. 2839-2843, 2001 https://doi.org/10.1109/78.960431
  18. M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems: Analysis, Optimisation And Application, North-Holland, Amsterdam, The Netherlands, 1987
  19. K. Tan, K. M. Grigoriadis, and F. Wu, '$H_{\infty}$ and $L_{2}$-to-$L_{\infty}$ gain control of linear parameter-varying systems with parameter-varying delays,' IEE Proc. Control Theory Appl., vol. 150, pp. 509-517, 2003
  20. F. Wu, and K. M. Grigoriadis, 'LPV systems with parameter-varying time delays: Analysis and control,' Automatica, vol. 37, pp. 221-229, 2001 https://doi.org/10.1016/S0005-1098(00)00156-4
  21. X. P. Zhang, P. Tsiotras, and C. Knospe, 'Stability analysis of LPV time-delayed systems,' Int. J. Control, vol. 75, pp. 538-558, 2002 https://doi.org/10.1080/00207170210123833
  22. H. R. Karimi, P. Jabedar Maralani, B. Lohmann, and B. Moshiri, '$H_{\infty}$ co control oflinear parameter-dependent state-delayed systems using polynomial parameter-dependent quadratic functions,' Int. J. Control, vol. 78, no. 4, pp. 254-263, March 2005 https://doi.org/10.1080/00207170500089455
  23. P. Park, 'A delay-dependent stability criterion for systems with uncertain time-invariant delays,' IEEE Trans. on Automatic Control, vol. 44, pp. 876-877, 1999 https://doi.org/10.1109/9.754838
  24. Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems,' Int. J. Control, vol. 74, pp. 1447-1455, 2001 https://doi.org/10.1080/00207170110067116
  25. H. Gao and C. Wang, 'Delay-dependent robust $H_{\infty}$ and $L_{2}$-$L_{\infty}$ filtering for a class of uncertain nonlinear time-delay systems,' IEEE Trans. on Automatic Control, vol. 48, no. 9, pp. 1661-1666, 2003 https://doi.org/10.1109/TAC.2003.817012
  26. A. W. Pila, U. Shaked, and C. E. de Souza, '$H_{\infty}$ filtering for continuous linear system with delay,' IEEE Trans. on Automatic Control, vol. 44, pp. 1412-1417, 1999 https://doi.org/10.1109/9.774112
  27. H. Gao and C. Wang, 'A delay-dependent approach to robust $H_{\infty}$ filtering for uncertain discrete-time state-delayed systems,' IEEE Trans. on Signal Processing, vol. 52, no. 6, pp. 1631-1640, 2004 https://doi.org/10.1109/TSP.2004.827188
  28. M. S. Mahmoud and A. S. Boujarwah, 'Robust $H_{\infty}$ filtering for a class of LPV systems,' IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, vol. 48, no. 9, pp. 1131-1138, 2001 https://doi.org/10.1109/81.948442
  29. L. Wu, P. Shi, C. Wang, and H. Gao, 'Delay-dependent robust $H_{\infty}$ and $L_{2}$-$L_{\infty}$ filtering for LPV systems with both discrete and distributed delays,' Control Theory and Applications, IEE Proceedings, vol. 153, no. 4, pp. 483-492, 2006 https://doi.org/10.1049/ip-cta:20050296
  30. X. Zhang, P. Tsiotras, and T. Iwasaki, 'Parameter-dependent Lyapunov functions for stability analysis of LTI parameter dependent systems,' Proc. of the 2nd IEEE Conference on Decision and Control, pp. 5168-5173, Maui, HW, 2003
  31. M. Wu, Y. He, J. H. She, and G. P. Liu, 'Delay-dependent criteria for robust stability of time-varying delay systems,' Automatica, vol. 40, pp. 1435-1439, 2004 https://doi.org/10.1016/j.automatica.2004.03.004
  32. M. G. Safonov, K. C. Goh, and J. H. Ly, 'Control system synthesis via bilinear matrix inequalities,' Proc. ACC, pp. 45-49, 1994
  33. P. Apkarian and R. J. Adams, 'Advanced gain-scheduling techniques for uncertain systems,' IEEE Trans. on Control Systems Technology, vol. 6. pp. 21-32, 1998 https://doi.org/10.1109/87.654874
  34. C. W. Scherer, 'Mixed $H_{2}$/$H_{\infty}$ control for time-varying and linear parametrically varying systems,' Int. J. Robust and Nonlinear Control, vol. 6, pp. 929-952, 1996 https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<929::AID-RNC260>3.0.CO;2-9
  35. P. Gahinet, A. Nemirovsky, A. J. Laub, and M. Chilali, LMI Control Toolbox: For Use with Matlab, The MATH Works, Inc., Natik, MA, 1995
  36. S. Boyd, E. L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, Studies in Applied Mathematics, vol. 15, SIAM, Philadelphia, Pennsylvania, 1994