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A Delay-Dependent Approach to Robust Filtering for LPV Systems

with Discrete and Distributed Delays using PPDQ Functions

Hamid Reza Karimi, Boris Lohmann, and Christof Biiskens

Abstract: This paper presents a delay-dependent approach to robust filtering for linear
parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states
and outputs. It is assumed that the state-space matrices affinely depend on parameters that are
measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are
established in terms of linear matrix inequalities (LMIs) such that the filtering process remains
asymptotically stable and satisfies a prescribed Ho performance level. Using polynomially
parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we
establish the parameter-independent delay-dependent conditions with high precision under which
the desired robust H. filters exist and derive the explicit expression of these filters. A numerical
example is provided to demonstrate the validity of the proposed design approach.

Keywords: Delay, LPV systems, Ho filtering, LMI, polynomially parameter-dependent

quadratic functions.

1. INTRODUCTION

In the past decade, a number of papers have
attempted to develop robust filters that are capable of
guaranteeing satisfactory estimation in the presence of
modeling errors and unknown signal statistics [1].
Concerning the energy bounded deterministic noise

inputs, the H, filtering theory has been developed

which minimizes the worst-case energy gain from the
energy-bounded disturbances to the estimation errors
[2]. Furthermore, the H_, filtering problem has

recently received considerable attention. The aim of
this problem is to pursue the enforcement of the upper

bound constraint on the H_, norm where the system

is affected by parameter uncertainties [3].
The stability analysis and control design of linear
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parameter-varying (LPV) systems have received
considerable attention recently [4-7]. To investigate
the stability of LPV systems one needs to resort the
use of parameter-dependent Lyapunov functions to
achieve necessary and sufficient conditions of system
stability [8-14]. Development of some conditions for
robust stability analysis of LPV systems with
polytopic uncertain parameters in terms of solvability
of some linear matrix inequalities (LMIs) without
conservatism is investigated in [10]. Concerning
unknown parameter vector, an adaptive method has

been presented for robust stabilization with H_

performance of LPV systems in [6]. The existence of
a polynomially parameter-dependent quadratic
(PPDQ) Lyapunov function for parameter-dependent
systems, which are robustly stable, is stated in [15].
Recently, sufficient conditions for robust stability of
the linear state-space models affected by polytopic
uncertainty have been provided in [16] using
homogeneous PPDQ Lyapunov functions.

On the other hand, in addition to the system
uncertainties, it is well known that the time-delay is
also often the main cause of instability and poor
performance of dynamical systems [17,18]. The
stability and the performance issues of the LPV state-
delayed systems are then both theoretically and
practically important and are a field of intense
research. Recently, some appreciable works have been
performed to analyze and synthesize LPV time-delay
systems (e.g., see [19-21]). More recently, a
systematic way for the use of PPDQ functions in the
state feedback control of LTI parameter-dependent
systems with time-delay in state was proposed in [22].
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It is noted that the above paper introduces a delay-
independent stability criterion which is a source of

conservativeness in comparison with the present work.

On the other hand, it is known that the conservatism
of the delay-dependent stability conditions stems from
two causes: one is the model transformation used and
the other is the inequality bounding technique [23,
Lemma 1] employed for some cross terms
encountered in the analysis [24]. Considering these, in
[21], a model which is equivalent to the original LPV
time-delayed system was proposed and the bounding
technique was used. However, conservatism still
remains in these results, which motivates the present
study. Generally, LPV time-delayed systems may arise
from simplification of some partial differential
equations. Furthermore, LPV time-delayed systems
are used to model dynamical systems in engineering
such as a milling process [21].

The problem of filter design for uncertain time-
delay systems has received much less attention
although they are important in control design and
signal processing applications. Recently, the problem
of H, filtering for LTI and linear time-varying

systems  with time-delay —measurements was
investigated in [25-27]. It is also worth citing that few
studies have been done for the design of H_, filters

for LPV systems [28,29]. However, the H, filtering

problem for LPV systems with delayed states and
output has not been fully investigated and remains to
be important and challenging.

This paper presents a delay-dependent method to
robust filtering problem for a class of LPV systems
with discrete and distributed time-invariant delays in
the states and outputs. It is assumed that the state-
space data aftinely depend on parameter vector that is
measurable in real-time. Using Leibniz-Newton
formula and some free weighting matrices, some new
delay dependent stability conditions are established
with less conservative and the filtering process
remains stable and satisfies a prescribed Heo
performance level. Moreover, using PPDQ functions
and some Lagrange multiplier matrices, the
parameter-dependent delay-dependent conditions are
relaxed to the parameter-independent delay-dependent
conditions with high precision under which the
desired Ho filters exist; then, the explicit expression
of these filters is derived. Eventually, an illustrative
example is given to show the qualification of our
method.

Notations: The symbol * denotes the elements
below the main diagonal of a symmetric block matrix.
Also, the symbol ® denotes Kronecker product, the
power of Kronecker products being used with the

natural meaning M =1, M?® = M?D® @ M and
®}=m pl[k] = pl[j] ®...®p1[k]. Let {j/wjk} c mkx(kﬂ)’

J, e R™ and I with scalar 9 be defined by
jk ::[Ik kal]v jk ::[kal ]k]’ jn,n :2[111 Onxn] and

S[k] = col {1,3,---,19/‘ '1}, respectively, which have
essential roles for polynomial manipulations. Finally,
|x(®)]|, denotesthe L, norm of x(z).

2. PROBLEM DESCRIPTION

Consider a class of LPV systems with discrete and
distributed delays in the states and outputs as

xX(1) = A(p)x(1) + Aa (p)x(t — d)

’ (1a)
+ Az (p) [ x(s)ds+ E(p)w(d),
-7
x(1) = §(t), te[-d,0], (1b)

z(1) = L(p)x(t) + Ly (p)x(t — d) + E3(p)w(7), (1¢)
(1) =C(p)x(0) + Cy(p)x(t = d)

’ (1d)
+Cye(p) [ x(s)ds+ Ey(p)w(0),

-7
where x(t)e R", w(t)eL5[0, ©), z()eR*, and

y(t) e RP are state, disturbance, estimated output
and measured output, respectively. @(¢)is continuous

vector valued initial function. Moreover, the
parameters ¢ and 7 are constant delays and the

vector p=col{py, s, P} € <R™ is uncertain
but the parameters p; are measurable in real- time
with £ being a compact set.

In (1), the parameter-dependent matrices are
unknown real continuous matrix functions, which
affinely depend on the vector p, that are

Alp) Ag(p) Az (p) E(p)
L(p) Lg(p) 0 Es(p)
Clp) Cy(p) Cy(p) Er(p)

4o Aoa  Apar  Eor
=1Ly Log O Ep 2)
Co Coa Coar Em
A A A Ep
+>pi|L; Ly 0 Eg|

=
Ci Cra Ciae Ep

In this paper, we focus on the design of a full order
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delay-free Hw filter with the following equations

i(t) = F(p)R(t) + G(p)y(1), (3a)
(1) =0, te[-d,0], (3b)
2(t) = L(p)3(1) + E3 (p)w(d), (3c)

where the state-space parameter-dependent matrices
F(p), F;(p) and G(p) of the appropriate dimensions

are the filter design objectives to be determined. In the
absence of w(¢), itis required that

||x(t) - )?(l‘)“2 -0 as t>ow,

where x(f)eR"” and 2(¢) are the estimation of
x(¢) and of z(¢), respectively, and e(r)=z(¥) - 2(¢)
is the estimation error. Now, we obtain the following
state-space model, namely filtering error system:

X(O)= A, X(O) + Ay, X (1~ d)

t : (4a)
+ Aoty | X(5)ds + E,,w(0),
-7
X0 =0 &', te[-d,0], (4b)
(1) = Loy X (1) + Loy, X (t =), (4¢)

where X (f)=col{x(?),X(t)} with X(¢)=x(¢)—x(@)
and

A, =A4(p) { R 0 }

= p = R
ep e

Ap -F P Gp Cp r,
Ay P R
Aedp = Aed (p) = Jn,n s
Adp B Gp Cdp
Adr I

Ay = Aear (P) = g s

edtp edt Adrp _ Gp CdTp n.n

) Ep
Eep = Ee (/0) = El _ G Ez b
p o F2p

Lep = Le(p)z‘:() Lp}’Ledp = Led(p):[Ldp O:I'

Remark 1: In the case X(¥)=col{x(¢),x(¢)} and
in the absence of the distributed delay in (1), the
formulation of the filtering error system (4) can be
obtained directly from the results of [25,27].

Definition 1: The robust H filter of the type (3) is
said to guarantee robust disturbance attenuation if

220, _
ol

sup sup
pes ||w||2 #0

holds under zero initial condition for all bounded
energy disturbances and a prescribed positive value y.
The main objective of the paper is to seek the state-
space parameter-dependent matrices of the robust
filter (3) guarantees a prescribed Ho. performance for
the augmented system (4). To investigate the
Lyapunov-based stability of the augmented system,
one important role will be played by the search for
PPDQ functions chosen within the following class.
Definition 2 [10]: We call a polynomially
parameter-dependent quadratic (PPDQ) function any

quadratic function x? (1)S(p)x(t) on R” such that
S(p) =@y M O 1) @] pl ®1,)
for a certain S} e R¥ ™K The integer k-1 is

called the degree of the PPDQ function S(p).

Notice that a very important recent result in [30]
provides upper bounds on the degree of the PPDQ
function.

3. ROBUST H« FILTERING

In the following, it will be assumed that the robust
H, filter (3) is known and the delay-dependent

stability conditions will be investigated under which
the augmented system (4) is stable and satisfies the

prescribed H, performance for all vectors pe{ .

The approach employed here is to investigate the
delay-dependent stability analysis of the augmented
system (4) using quadratic Lyapunov-Krasovskii
functionals [17,31] in the presence of the disturbance.
Now, we choose a Lyapunov-Krasovskii functional
candidate for the LPV system (1) as

V(t)y=N{D)+ V() +V3(D) + V4 (0) + Vs(1), (5)
where

n(ty= X0 P,X (),

t
no= [ X JT ZypdunX(0)do,
t—d

0 /(¢ t
= | [ fxorJr dej Z, p( J‘jn,nX(H)dHJ ds,

t—T\§

T ¢
A j j @-t+PX@" I 2,,] X(@dadp,
0t-4 , |
0 ¢
= | [ X@"J! z,J  X(@)dadp
-d t+f

with the positive definite matrices
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P,

2p

P] O XL
P, ¢=P(p)={ . }eiﬁz ”, (6)

where the PPDQ functions {P p} j=1 and {Z p}, -1

satisfying the following representation forms:

Z _Zl (p) (®l mpzk]®1 ) Zl k(®z mpzk]®]n)a

(N

with parameter-independent positive definite matrices
m m
{Pra-Zy 4} e R4 of the order k1.

Now, let us define a Hamiltonian function H(w, o)
as:

d
H(w, p) = randORIch H (z=2) =W w.(])
It is known that the inequity

H{w, p)<0 9

implies the following inequality

T T
[z-2) (z-2)dr <y* j w! wdt
0 0

T
V(XO)-VXT) <y [whwd,
0

that is identical to the performance specification in
Definition 1.

Using the Leibniz-Newton formula, i.e., X(r—d)=
t

Xt - jX (o)do, for any appropriately dimen-
i—d

sioned matrices Yp, T

Y and Sp, we have

20X Y, + Xt -d) T, +w(t)' S,)
Lo (10
x(X()-X(t-d)- [ X(o)do)=0,

t—d

which is added to the Hamiltonian function H(w, p).

On the other hand, for any semi-positive definite
matrix

X]lp Xl2p X13p X14p
* o Xy, Xazp Xy
X, = S PNV SR O
* o X3, Xagp
* * * X44p

the following holds.

w1,

t
de" (X 60 - [ X ,Endo=0,  (12)

t—d

t
where £(1) = col (X (1), X(t - d), [ X(s)ds(t)}.

-7
The time derivative of {V; (t)}le along the solution
of the system (4) can be given, respectively, by

() =2X(0) P, (A, X (1) + Ay , X (1 = d)

t
+ Aoy j X(s)ds + E,,w(1)),

-7

Vo) = X (0 I}, 21 5T n X (1)

p

_X(—-d) TnnZ, oI nnX(t=d),

t t
V'3(t):—[ [ xe©y j,f,ndé’szp( | jn,nX(H)dé’}

-7 t—-7

0
2 [x@'

-7

1
[ [x®)J], d@} 7, p[ | jn,nX(H)dé’}
t

-7 -7

t
Il 0 Zop [0 X (0)d6ds
5

+ L X O] 225 X (1)

¢
+ j O-1+0)X©O)

-7

V=5 x@"

I T 1 22y n X (0)d0,
o .
']n,n ZZpJn,nX(t)
t
- j (a—t+7)X(a)"

-7

V() = dX (O I, 25,0 X (1)

I 22y pdy n X (@)da,

= j X I, 25,0, X (@)dar.
t—d

Then, we have

V() <2X (0 Py (A, X (1) + Ay, X (¢~ )

t
+ Aoy [ X(s)ds +E,
-7

X(Zy, +T°Zy )W X ()= X (t =) T},

)+ XOT T,

I3
XZ) p) yn X (8 = ) —( [x©"J] nd@} Zy,

t—7

t
x{ j jn’nX(H)dH} +d(A,, X (1) + g X (1 — d)
t

-7
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t
+Aoiep j X (s)ds
-7

T 3T 7
) JT 23,7 (4, X (1)

t
+Aogp X (t=d) + Ay, [ X(5)ds + E,,w(2))

-7

t
- j X I, 25,7, X (@)de.
t—d

(13)
From (13) and adding the equations (10) and (12) to
(8), results in

t
Hiw, p)<EOTE 0~ [ £(,0) Q¢ (,0)do,(14)
t—d

where

t
C(t,0) = col IX (1), X (t - d), j X (s)ds,w(t), X (o)}

-7
and
Xi1p Xi2p Xizp Xiap Y,
o Xy KXoz, Xy T,
Q,=| * * o X33, X, 0 ,
* * % X44p Sp
~T ~
| * % * * Jn,nZ3pJn,n_

with
Ay=P.A +A4 P +Y +YT
n=Fpdep +4epPp +Y, + Y,
o 5 .
Ty n(Zyy +T°Z3 )+ I oLep
+addl Jr 7, pjn’nAep+dX11 o

ep nn

T 5T 7
A13 = PpAedTp +Xm3p +dA J Z3pJn,nAedrp’

e n,n

T T 5T 7
A14=PpEep+Sp+Xm4p+dA J Z3pJ E

ep n,n mn-ep:

_ T 5T 7
A23 - dX23p + dAedpJn,n Z3pJn,nAedrp’

5T 7 T
Ay = —‘]n,nZIpJn,n _Tp _Tp +d‘X22p

T 5T 7 T
+dAedpJn,n Z3p ><Jn,n ed p + LedpLedp’

_ T T 5T 4
Ay = —Sp + dAedpJn’n Z3pJn7nEep + dX24p,

2 T 5T 7
A44:_}/ Is+d‘X44p+dEepJn,nZ3pJ E

nntep:s

_ 5T 7 T 7T 3
A33 - _Jn,n Z2pJn,n + dX33p + dAedTp Jn,n Z3pJn,nAedTp ’

T 5T 7
A34 :dX34p +dAedTpJn7n Z3pJ E

A o
According to partitioning the existing matrices if

E,<0 and Q, >0, then H(w, p)<0 for any
E()#0. Applying the Schur complement Lemma

-

shows that inequality =, <0 implies

Al An A3 Al
x An d X3, —SZ+d Xoup

Hp =1 % % &33 d X34p
* % * VL +d Xy,
* * * *
T 5T ]
d AepJn’n Z3p

T T
d Aedp‘]n,n Z3p
d A" Il Z,|<0(15)

edrp” 1

T 5T
d E'Jr, Zay,

~d Zs,
with
Ajy=Pd,,+ AL P, +Y, +Y]
Iy 21y + T2y ) +d Xy + LpLess
Aty =Podogy =Y, +T" +d Xip,+ Ll Lo,

A13 :PpAedrp +d X13p’

A14 =P E

T
p ep+Sp +d X14p,

s~ AT 5 T T
A22 - _‘]n,n le']n,n _Tp _Tp +dX22p +LedpLedp’

. AT A
Az3 = _Jn,n ZZpJn,n +dX33p'

Notice that the matrix inequality (15) includes
multiplication of filter matrices and Lyapunov
matrices. In the literature, more attention has been
paid to the problems having this nature, which called
bilinear matrix inequality (BMI) problems [32]. In the
sequel, it is shown that, by a suitable change of
variables, the filtering problem can be converted into
convex programming problems written in terms of
LMIs.

Remark 2: Considering the parameter-dependent
BMI (15) in addition to partitioning the existing
matrices P, and {Z jp}i'zl and assuming

Wip W, 1= PoylF,.Gpl, (16)
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where 7, e R"™" and W,, € R" "7 leads to

Ay Ap A Ay Ags dXi312,
* Ay Ay Ay Ays dXy32,
* x Ay Ay od Xy, X312,
m,- * ok x Ay dXi3,2]p dX»32,
S Ass dX3312,
ok k% % X330,
ES * * * * *
L* * * * % *
Ay ddlzy, ]
A 0
Ay dAj,Z3,
Ay 0
<0(17)
d X341, dAg‘rpZ?ap
dX347, 0
Ay dE|,Z5,
* —d Z3,
with

K]1 = Ag‘tip +PlpAp + Yilp +Yl€p +le
+7°2Zy, +dXy 1,1, +L,L,,

Ay = CoW, + Y, + Y3, Xy, — L0 L,

A3 =RB,45, - Y, +TlT1p +dX1211, +L,T0Ldpa

Ay ==Y, + T +dX 1515,

Ais = By dgy, +dX 301,

Ay =R ,E, + 8/ +dXi41p,

Ay = M, +W1€) +¥p, +Y2T2p +dX|12, +L£Lp,

Ay =W ,Cq, — Va1, +Tl€p +dXy521, ‘L,ToLdp»

Ay =Ty, +T]€p +dX 52,5

Ags =W, ,Cpp +dX13 51

Agy =Wa, By, + 8] +dX 140,

As3=-21,-T, —TlTlp +dX> 11, +LZpLdp’

Ay = Ty, —T;p +dX 315,

< T
Az7 ==, + dX24,1p’

~ T
Ay =-Tx), —Tzzp +dX53 225

<~ _ T
By ==ST +hXy2,,
Ass ==Z5, +dX3311p,

< 2
Ay ==yl +dXy,,

Y, Mo L, T
where ¥, = g p,Tp= g p’Sp:
Hip Yap L, Ty,
jllp i,12p
col{Slp,Szp}, Xijp:\: . ¥ },andXMp:
7,22p

col{iXiy 1,

Xi4,2p} for l,] = 1,2,3.

Theorem 1: The filtering error system (4) obtained
from the interconnection of the plant (1) and the filter
(3) is stable and achieves the Hw performance for a

given performance bound y in the sense of
Definition 1 if there exist the parameter-dependent
positive definite matrices {Pl-p}l-z:l and {Z ip}i':l’ a

symmetric semi-positive definite matrix X, , the

parameter-dependent matrixes {W; p}jz:l and any

appropriately dimensioned matrices Y,, T, and

S, such that the parameter-dependent LMls

I,<0 and Q, >0 are satisfied, respectively.

Remark 3: It is noted that the proposed delay-
dependent stability conditions in Theorem 1 is
obtained without resorting to any model transforma-
tions [17] and bounding techniques [25,27] for some
cross terms, thus reducing the conservatism in the
derivation of the stability conditions.

4. PARAMETER-DEPENDENT LMI
RELAXATIONS

This section is devoted to solve the parameter-
dependent LMIs to finding the parameter-dependent
state-space matrices F, and G,. These parameter-

dependent LMIs are corresponded to infinite-
dimensional convex problems. In the literature, there
are some attempts to obtain a finite-dimensional
optimization problem such the parameter-dependent
Lyapunov functions are approximated using a finite
set of basis functions [19,20,33,34]. The main
approach employed here is using the PPDQ functions
as the basis functions to relax parameter-dependent
LMIs into parameter-independent LMI forms by
utilizing some Lagrange multiplier matrices.

Lemma 1: Let the degree of the PPDQ function

R, be k—1. A PPDQ function of degree k for

parameter-dependent matrix A ,T, is given by

k+1 k+1 -
R,T, =, A1) S @,/ ®1,),
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m

where T,=Ty+> pT; and T, eR"*, then the
i=1

parameter-independent matrix S, € g+ x((k+1)"g)

which depends on the parameter-independent matrix
By linearly is defined as

Sy =Ur®e1) R,

Am® m. .
x[(JZ ®T0)+Z(J§Z"

H® ~-)®
®J,®Jr  ®T,)|
i=l

Proof: See [13,22]. O
According to Lemma 1 for the parameter-dependent
matrices E,, 4,, A4;, and Ay, we obtain

Pod =@,p"®1,) F('>(®, PR,
Bod, =@l O L) Y @, ®1,),
Pod, =@,/ el,) F(’) L@ A e),

ok, =@, A" e 1) 20 ©, e,

Z3,4,

[k+1
Z3pAdp (®z m Pi +]®I) Fde

= @AM ® 1) F, @, A ® 1),
@),

[k+1
Z3pAdz'p (®1 m Pi +]®I) de ¥

lml

k -
Z3,E1, =@, AN ® L) 2y (@, A ®1),

(OO @ g0
where F’ F1dk Fldr,k B szk, FZd,k’ FZdr,k

and E__ are represented in the following forms:

Y Am®
171(,;)2(‘]: ®1,) Py x

~Am® D (m~f) -1
[Jf ©4+30 et 05 ®Ajj,
j=1

- ~Am®
FO =G @1, By
J

~Am® LN
[JZ’ ®dgg + > Tk

j -D®
=Y A3 ®A-d],
j=1

FO =(Ur®e1) P

~Am® LLEDN ] -1
LJ? ® 4y, + YT T 0r, 0 ®Ajd,}
j=1

; ~m®
=0 = (01" ®@1,) By x

j -1
ne ®J, A

~Am® LN
[JZ ®Ey + 3 J¢ ®Eﬂ],
=

[k
(®z mpt +l ®In)=

_ ~m®
Fz,k =(Jk

~Am® 2~ (m=-)®
[J? ©4+> I8

J=1

® L) Z3 x
~ ~-H®
07, @7 " @AJ-J,
~Am® T
F dk =(Jk ®In) Z3’k><

m ~
Te® @ oy + 3 I8
j=l

) -1
Pl el " ®Ajd}

/———\\

~m& T
FZdr,k=(Jk ®1,) Zz; %
® LN ] N

(JZ ® Aoy + 00 P 0T 0TF ®Ajdf},
j=l

Eo =Tk ®In)TZ3’k><

{ PoE+> T s el " ®Eﬂ].
A

Remark 4: For the matrix R, = A;Plp +H,4,
the PPDQ function of degree & is given by

Rlp:(®1—mpzk+l]®1 ) R k(®1 mpzk+l]®l )

and from Lemma 1, the positive definite matrices

e RED" A" n yich  depends on  the

parameter-independent matrix P linearly is obtained
as

® -1)®
F A WA= Y) S

T
®AiJ Ry
i=1

le—(,]k ® Ay + ZJ

~m® ~m® T
x(Jr ®@L)+(Jr ®1,) R

1

~AmR LN ' ~-H®
x[JZ 04+ Tl el ®A~].

i=1

The parameter-dependent matrices {W p} G in

(16) can be expressed in the forms

Wy =@ © 1) W, @,/ e1,),

WZ _(®l mptk]®1) W (®1 mpzk]®l )

with W, € RE" (K" n) ang Wy, € RE" W™ p),

Then, we have
WZpCp = (®§:m pzk+1] = ) W2 k(®z mpzk+l] ® Ip)’
L3 [k+1
WZpCdp =(®1’—mpz il 1 ) W2d k(®1 mpz ] Q1 )
13
WZpCdrp (®1—mpzk+1] 1 ) WZdT k(®z m P [e] ®7 )
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k
Wapkrp = (-, N @ 1,7 W 1 (® mp[kﬂ]@]p),

1

where {Vflz,k’w_/zd,k7%d7,k’%,k} Em((k+l)mn) x( (k+1)mp)' 0n"“90n s
are defined, respectively, as (k™ —=m=1) elements
— ~m® T
Wz,kz(Jk ®[n) Wz’kX
~m® M (i e I, =diag| I;, 0,,~-,0
T ®CO+ZJ§Z” Peornell e NI
i=1 (k™ =1y elements
VI_/2 ik = (‘7:@ ®I, )T W, ;. x We are now in the position to state our main results
’ ' in the following theorem.
~m® o A (=)@ ~E-D® Theorem 2: Let the positive integer k—1 as the
Jp ®Cyy+) J . : . . .
{ k 0d ; k ® Jk ©Jk ©Cla |- degree of the PPDQ functions be given. Consider the
_ om® LPV system (1) with the discrete and distributed time-
Wagr i =k ®I DF Wy % delay parameters d and 7, respectively. For a
e (mi)® A(-D)® given performance bound y, if there exist the set of
~ ~ 1 =
LJk ® Coar + Z;Jk ®J,®Jr  ® CdTJ, parameter-independent matrices {5, W, 1, X1} 1245
i=

. ~m® r Xiz e X1z 2k X12,010 X12,226 X13,1100 X 13,126 13,
Wz,k:(.]k ®]n) Wz’kx
21k X132k X 2212k X 231180 X 23,12k » X 23,20k X 33,10k »
57 5 50m 8 FU-he Xyt 16 X1 20 Xoa 12> Xot 20s Xaa 15 Xaa 205 T 10 Y,
Jr ®Ey, +2Jk ®Jk & Ji R E, | 14,1k >4 14,2) > 4 24,1k > 24,2k >4 34,1k >4 34,2k > 11 Lk > 112,k >
=
l Y1 Yoo ko Tk Tio k> Do s Toz oStk S2,1 - the set of
T . o . .
Similarly, the matrices LI oLps Lyply, and I parameter-independent positive definite matrices {£,
can be represented, respectively, by Pz,k L ks Zz,k 23 ks X111k .¢ 122k XZZ,] 1k ,X22,22k,

~Am® — ~m® X33,11k’X33,22k’X44k} andthe set OprSitiVe deﬁnite
=@, er) Uk 1) LU 1) A S® a0y x@)
- . ol m
X(®1 mP;kH] o), Lagrange multipliers {Qi’ o ,Qi’k,Qi’k, aQi’k Vi
~m® — Am® to the following LMIs,
LypLay =@, o) 05 @1, L,k ®1,) ]
(] i Xz Xizawe Xizge Xiziu
<@, ®1 )

* Yo  Xione Xk Xiz2m

I, =@, pF o1 )" (Jk ® 1) Ik(Jk ®I,) * * Vi3 Xy Xospu
x(®_, /N ®1), * * * Yy o Xaou
Qm,k =| = % * * Yss
where L, € U™ X" n) Ly e RAET IXE™ 1) g ¥ * * * *
* * * * *
I e RE" HE" ) e given by * * s * *
* L & * *
J78 -
’ Xz X N Nog
L, = Block diag Ll [LO Ly - Lm}, 0,0, | Xisooe Xuape Y Taox
: (kmmem Xpzaoe Xoawe T Tog
Ly, Xozoor Xoapr Toe Toog
i, Xy Xaaue O 0 [20,(18)
T Yoo Xz O 0
L, = Block diag|| 114 [ 704 L+ Lna | Ty
: * * ‘{—’88 0
L;d * * * 0
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|
L L Xz Xy
* Ly Zpz oy
¥k Ya3 Xy
Hm,k:
* * * 244
* * * *
sk * * *
* * * *
* * * *
Am® T
d(Jg” ®L,) Xiz10%
J®®1,)
Sm® T
d(Jy" ®1,) Xi3001
e ®l,)
~m®
dJ7® ®1,) X315
Jr®elr,)

dJp® ®In)TX23,22k
J®®1,)
d(Jpre® ®In)TX33,12k

7 e1,)
Z66

*

#*

where

m
5 (m—i+1)®
iy =X11,llk"Z(J1£m D

i=1

o Qz(lk) ( jlgm—i+l)® ® I(

i=1

S [ j0-0@ g 7 !
—I
+Z(Jk ®J, ®1(k+1),-_1n)

Hamid Reza Karimi, Boris Lohmann, and Christof Blskens

25
25
~AmQ T
dUr ®L,) Xp3in
~AmK
Jr ®I)
~AmQ T
diJr @) Xy
~m&
Jr ®1)
Zss
*
*
*
T
T
237 dFZd,k
<0,(19)
Sy 0
T
Zs7 dFZdT,k
S 0
T
Ly ok
* Zgg |
T
®1 (k+1y1n )

k+1)"—1n)

A [ 3(m-)H® F
XQi,k (Jk ®']k ®[(k+1)i_1n)’

o ( 5(m-i+1)® d
m-i
¥ =X11,22k—21:(]k ®1(k+1)i-1n)
i=
A2) [ Hm-ith®
X Qi,k (Jk ® I(k+1)"‘1n)

m T
Hm—D® o F

+21(Jk ®Jk®l(k+1),~-1n)

=

22 [ 5m—)® o
XQi,k (Jk ®Jk ®I(k+1)i‘1n)’

< [ H(m-it)® T
¥33 =X22,11k_zl‘,(']k ®I(k+l)i—1n)
i=

A3) [ 3(m-i+1)®

XQi,k (Jk ®1 (k+1)"‘1n)
m n . -

+ Z(J,Em")® ®J, ®I
i=1

50) [ jm-1® & 7 ,
XQi,k (Jk ®J, @ ](k+1)"‘n )

T
(k+1y 1y )

m

S (m—i+1)® g
Va4 = Xop 201 _ZI:(J/C ®I(k+])i—1n)
i=
2(8) [ 3(m-i+h)®
XQz',k (Jk ®1 (k+1)"—1n)

m T

F(m-i)® 7

+Zl(Jk ®J, ®1(k+l),._1n)
i=

AD) [ F(m-D® o F
% Qi,k (Jk ®J;® [(k+1)"‘1n )

[ Fm-i+1)@ d
=1
¥ss =X33,11k_Z(Jk ®[(k+1)i—ls)
i1
2(5) [ 3(m—i+1)®
XQi,k (Jk ®](k+1)i—1s)

m T
Hm—)® 7

+ 1:(Jk ®J, ®I(k+l),-_1s)

i=

A §(m—i)® o F
XQi,k (Jk ®Jk ®I(k+l)i_1s)’

<« [ Hm-i+))® d
m—i
Y6 = X3300k = Z;(Jk ®I(k+1)i—1n)
i=

A(6) [ F(m—-i+1)® )
XQi,k (Jk ®I(k+l)’_1n)

m T
FHm—)® F
+ Z;‘(Jk ®J,®1, 0, )
i=

A6) [ 7(m—D® o T
% Qi,k (‘]k ®J ® I(k+1)i‘1n )’

Zm A(m-it1)® d
m—i
i=

AT [ 3(m—i+)®
% Qi,k (Jk ® I(k+1)"‘1n )
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(-2 @ 7 !
m—1
+Y 1(Jk ®J; @1, MH”)
=

AN Hm-D® o F
XQj,k (Jk ®Jk ®](k+l)i_1n)’

m .

T
: (k+1Y" 1 )
i=1

~(8) [ 3(m—i+1)®
XQi,k (Jk ® [(k+1)"‘1n)

(D o 7 d
m—1
+d 1(Jk ®J, ®1(k+1),._1n)
i=

A®) [ 7(m=-D® o 7
% Qi,k (Jk O ® I(k+1)"‘1n )
Zj =Ry + J7® ®]n)T(Zl,k +7° 7,

+dX )T ® 1)

m T
A (m=i+1)®

* ZI(J" ¥ I<k+1>"‘1n)

=

A0 ( 50m=i+1)®
Qs (Jk ® [(k+])i_1n)

m ~ H® . T
m—i
_Zl(Jk ®J ®1(k+1),.,1n)
i=
) [ m-)® o
XQi,k (Jk ©Jk ®[(k+1)i—1n)’
2) 5T ~m®
S =Ry W] + Tk ®L)Y (W] +¥y,
T Am@
tHx +dX )k ®1),
_FO L (G7® T _ T
Ly=F  tUe L) Chyu+T),
~m&
+dX 1 e ®1,),
~Am& ~m®
2y =(Jk ®[n)T(—Y12,k+T2T1,k +dXp )k ®L),
M ~m® T ~m®
Z15=FldT’k+d(Jk ®1,) XUk ®1,),
—(1 Am@ ~Am®
217 =E0 + (i ®5) (S +dXu )Tk ®1),

e _
Ty =(J}{ ®]n)T(_VV],k —Wl,Tk + L+

T .
+ Vg + Xy 0 )X (P ® 1)

m T
(m=i+1)®
+ ;(Jk ®1 ( M)Hn)
=) [ 3(m-it1)®
X Qi,k (Jk ® I(k+1)H n )

S ( 5m-n® g 7 d
m-i
_Z"](Jk ®J, ®1(k+1),._1n)

A [ Fm=D® o 7
XQj’k (Jk ®Jk ®I(k+l)i—ln),

Sy3=Fiy W, +UreeL)

= m®
x (=14 + T4 +dX 00k + Ly )T ® 1),
~Ame® T Em®
Yoy=(Jr ®IL,) (Tig,k_Y22,k+dX12,22k)(J/€n ®1,),
(2) _ ~m® T ~Am®
o5 =Fgly ~Waarp +dJx ®L) Xz (Jk ®1,),
Ty =EY W +UF® ®L) (S5 +dX, U B,
T = QIN (-Z,, ~T 4 — T, +dX
33 = n e~ e — Tk 211k
+ L TP @)
[ Hm—i+1)® d
m-—i
+Z;‘(Jk ®1(k+1),-,1n)

23) [ 3(m—i+])® )
XQi,k (Jk ®I(k+l)l_1n)

m A (m—i)® - T
m-1
_Zl(Jk ®J, ®1(k+1),._1n)

53 { jm-n® g 7
x 0% (Jk ®J, 1, i1, )

~AmR T ~m&
Say =~k OL) Tog + Ty~ Tk ®1,),

Am® ~m&
Ty =k ®L) (=ST, +dX, )TE ®I,),

24,1k

~m& ~Am&
S =k L) (T +Thy ~dXpo )k ®L)

m T
Am—i+])®

+Zl(Jk ®1(k+1),-_1n)
~(4) [ 5(m=i+1)® ‘

XQi,k (Jk ® 1(k+1)"1 n )
E( simi)® o T

m—I

_zl(Jk ®J, ®1, k+1y'—ln)
i=
A Hm-1)® o 7

XQi,k (Jk ®‘]k ®[(k+1)i_ln)’

~m® ~Am®
Ty =k ®L) (=Sp+dX, , Wik ®I),

~m® T ~m®
s =(Jk ®L,) (Zyy +dXy31)(Jk ®I,)
< F(m—i+H® T
m—i
+Z%(Jk ®I(k+1)i_1n)
i=

A(5) [ H{m—i+1)®
XQi,k (']k ®I(k+1)i_1n)

m — . T
m-i
_;(Jk ®Jk®l(k+l),-,ln)
i=
560 §0m-® @ 7
<08 (Jk ®J, @1, i, )

~Am T ~m®
Sg=d(Jr ®1) X Jr ®1),

34,1k (

~m& T ~Am®
S =dJy @I) X (Jr ®I),

34,2k
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~m&Q ~m®
Zge =d(Jk ®In)TX33,22k(Jk ®1,)

m T
F(m—i+1)®

* 21 (J" Oyt )

=

5(6) [ 3(m—-i+1)®
XQi,k (Jk ® I(k+1)"“n)

[ Gm-D® o 7 r
m-—i
_ ZH(Jk ®J, ®1(k+1),._1n)

A6} [ Fm—D)® o 7
X Qi,k (Jk O ® I(k+1)"‘1n )

~Am® — ~Am®
Sy =k L) (1T, +dXy )Tk ®I)

< Mm—i+1)® T
m-—i
+ -El(Jk ®[(k+l)i_1s)
=

A [ H(m=i+1)®
X Qi,k (Jk ® I(k+1)"‘1s )

[ 5m-)® g 7 d
m-—i
_ ZH (Jk ®J @1, 1)i—1s)

A §(m-)® o 7
XQi,k (Jk ®J ®[(k+1)"‘1s)’

~Am® Am®
g =-d(Jr ®1,) 23, (Jx ®1I,)

< [ Hm-ith® T
m—1
+ Z 1(Jk ®I(k+1)"'1n)
i=

5®) [ Hm-i+)®
XQi,k (Jk ®I(k+l)i_1n)

S Hm-)® g 7 4

m—i

_;:(Jk ®J, ®1(k+1)f-1n)
A®) [ F(m—D® o F

XQ;'J( (Jk ®Jk ®I(k+1)i_ln),

then the state-space parameter-dependent matrices for

the robust He filter of the type (3) which achieve both

the asymptotic stability and He performance in the
sense of Definition 1 are given by

-1
[F,.G,]=F;] [WIP,WZJ. (20)

Notice that the conditions (18) and (19) are
sufficient conditions to both asymptotic stability and
Ho performance in the sense of Definition 1.
Moreover, Theorem 2 gives a sub-optimal solution to
the filtering and this result can be reformulated as an
optimal filter by solving the following convex
optimization problem

Min A
subject to (18) and (19) with A:=y>.

Remark 5: It is noting that the number of the

matrices to be determined in the LMIs (18) and (19) is
16m+44. It is also observed that the parameter-
independent LMIs (18) and (19) are linear in the set of
matrices, which are calculated independently from the
vector p. Of course, the high dimension of the
resulting LMIs will increase the computational
complexity of the proposed approach to some extent.
The LMIs can be solved by the Matlab LMI Control
Toolbox [35], which implements state-of-the-art
interior-point algorithms and is significantly faster
than classical convex optimization algorithms [36].
Remark 6: A new set of matrices verifying
Q54120 T, <0 and @, ;>0 can be

generated, with index k+1 instead of £ in (18)
and (19), respectively. In this case, the solvability of
Q,;20, I,;<0 and ®,, >0 implies the
same property for the larger values of the index £.
Remark 7: The PPDQ function has polynomial
dependence on the vector o of a known degree and

can be used to derive exact conditions for the stability
of LPV systems. It should be pointed out that the
question of the lowest degree of the PPDQ function is
still open. In practical applications the size of the least
k, for which the LMIs are solvable could be difficult

to obtain, but only an upper bound is available [30]. In
this case the proposed approach in this paper can be
applied in robust H filter design problem for LPV
systems.

5. EXAMPLE

Consider the following state-space matrices for the
LPV state-delayed system (case m=1 and r=1),

fo 1) _Joo2] [0 o01]
AO—[—z -3}’ 1{0 0.1}"40”’—[—0.2 —0.3]’
Lo_[oz 0] To1 0]
1d{o.l o}’A‘)d’{ 0 —0.3}’
A1d7=[_0'04 0 }Em:[—o.z}

0 -0.02 0.2

o 1_'E 9% =1
7los o) 2 a0

Assume that the compact set of the parameter p

is ¢ = [—1, 1],
performance bound 7 =0.9, we solve LMIs (18) and

(19) using the Matlab LMI Control Toolbox. The
solution was obtained after about 50 seconds on a
computer with a 2.66 GHz Pentium processor. For
instance, parameter-independent positive definite

matrices {Pi,z}’?:p {Z j,2}3':1 in (7) are found,

By Considering k=2 and the
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Estimation of the first state

First state

Estimation error

Time (sec.)

Fig. 1. Estimation results of the first state: with robust

Ho filter (dotted line), and real state (solid
line).

Estimation of the second state

[V]
©
ko -
- |
g |
o h
& | |
2L s |
0 1 2 3 4 5
5 I i I T
5 1 1 1 ‘
= I T
S |
© i i ; |
£ T Ty T
5 ; : l :
w I I I |
1 2 3 4 5
Time (sec.)
Fig. 2. Estimation results of the second state: with

robust Hs filter (dotted line), and real state
(solid line).

respectively, as

558.1889 567.4086 3.8314 -67.1420
R, - * 584.0305 3.2470 -68.7942 ,
’ * * 60.8586 65.3119
* * * 88.9274
2.0670 29107 0.4954 0.6721
P, = 10° * 5.5607 0.5373 0.8268 ,
’ * * 1.1273 1.3775
* * * 2.3649
472.3580 488.8646 -21.4093 -94.7120
Ziy- * 510.5201 -22.2502 -97.5753 ’
’ * * 70.3705  80.3965
* * * 106.4392

2.0354 2.1075 -0.1309 -0.4018
* 2.1930 -0.1308 -0.4083

Z,,=10" ,
; * * 03252 0.3764
* * * 0.4745
183.3843 191.2554 -9.4432 -27.9782
s 203.9704 -9.2004 -29.2303
2T« x 42.1449 43.0830 |’
* * % 47.8060
and matrices of the filter are
05741 -02769 -0.1023 0.0650

-0.7336 -7.3456 -0.1066 -0.1784
-0.1232  0.0151 -0.2579 0.2513
-0.1160 -0.1241 -0.2779 -3.9703
-0.8347 -0.0017 -0.2189 -0.0002

W, =10*

b4

b _ 10| 58795 0.0054 0.0077 -0.0006
22777 101700 -0.0001 -0.7119 -0.0005 |
0.0082 -0.0003 3.4226 -0.0020

Now, by considering the parameter p=0.2, the

result of simulations for discrete and distributed
delays d=0.8 and 7=0.1 seconds, respectively,
and a unit step disturbance are shown in Figs. 1 and 2.
These figures show the plant and filter states
trajectory plus their estimation errors. It is observed
that the filter is doing well to estimate the plant states.

6. CONCLUSION

The robust filtering problem for a class of LPV
systems with discrete and distributed constant delays
in the states and outputs has been studied in this paper.
By using the Leibniz-Newton formula and a suitable
change of variables, some new parameter-dependent
delay-dependent stability conditions are established in
terms of LMIs such that the filtering process remains
asymptotically stable and satisfies a prescribed Ho
performance level. Moreover, using the PPDQ
functions and some Lagrange multiplier matrices, the
parameter-independent delay-dependent conditions
are developed with high precision under which the
desired H.. filters exist; then, the explicit expression
of these filters is derived. A numerical example has
been provided to demonstrate the usefulness of the
theory developed.
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