• Title/Summary/Keyword: delay time interval

Search Result 229, Processing Time 0.024 seconds

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

Delay-dependent Stability Criteria for Uncertain Stochastic Neural Networks with Interval Time-varying Delays (구간 시변 지연이 존재하는 불확실 확률적 뉴럴 네트웍의 지연의존 안전성 판별법)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2066-2073
    • /
    • 2008
  • In this paper, the problem of global asymptotic stability of uncertain stochastic neural networks with delay is considered. The delay is assumed to be time-varying and belong to a given interval. Based on the Lyapunov stability theory, new delay-dependent stability criteria for the system is derived in terms of LMI(linear matrix inequality). Three numerical examples are given to show the effectiveness of proposed method.

Efficient Packet Transmission Method for Fast Data Dissemination in Senor Node (센서노드에서의 빠른 데이터 전달을 위한 효율적 패킷 전송 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.235-243
    • /
    • 2007
  • Sensor network is used to obtain sensing data in various area. The interval to sense the events depends on the type of target application and the amounts of data generated by sensor nodes are not constant. Many applications exploit long sensing interval to enhance the life time of network but there are specific applications that requires very short interval to obtain fine-grained, high-precision sensing data. If the number of nodes in the network is increased and the interval to sense data is shortened, the amounts of generated data are greatly increased and this leads to increased amount of packets to transfer to the network. To transfer large amount of packets fast, it is necessary that the delay between successive packet transmissions should be minimized as possible. In Sensor network, since the Operating Systems are worked on the event driven, the Timer Event is used to transfer packets successively. However, since the transferring time of packet completely is varies very much, it is very hard to set appropriate interval. The longer the interval, the higher the delay and the shorter the delay, the larger the fail of transfer request. In this paper, we propose ESTEO which reduces the delay between successive packet transmissions by using SendDone Event which informs that a packet transmission has been completed.In ESTEO, the delay between successive packet transmissions is shortened very much since the transmission of next packet starts at the time when the transmission of previous packet has completed, irrespective of the transmission timee. Therefore ESTEO could provide high packet transmission rate given large amount of packets.

  • PDF

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

Stability of Time-Varying Discrete State Delay Systems (이산 시변 상태지연시스템의 안정성)

  • Suh, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.43-47
    • /
    • 2002
  • Stability conditions of time-varying discrete state delay systems are proposed. The time-varying state delay is assumed that (i) the magnitude is known to lie in a certain interval (ii) the upper bound of the rate of change is known. Under these conditions, new stability conditions are derived based on switched Lyapunov functions. Stability conditions for both fast time-varying and slowly time-varying delay are considered.

Fault Diagnosis for Cable Using Reflectometry Based on Linear Kalman Filtering (케이블 고장 진단을 위한 선형 칼만필터 기반 반사파 계측법 연구)

  • Lee, Chun-Ku;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.19-21
    • /
    • 2009
  • The reflectometry for locating the fault at a cable is the same as a problem estimating the time delay between the incident and the reflected signals. In this paper, we propose a method for estimating the time delay between the two signals. The proposed method is based on the modeling of the Gaussian enveloped linear chirp signal in the Gaussian noise environment. The phase and the instantaneous frequency of the received signal are estimated by linear Kalman filtering. From the estimated instantaneous frequency, we can measure the time interval between the center frequencies of the incident and the reflected signals. The time interval is the same as the time delay between the incident and the reflected signals. In a simulation assuming that the cable has open fault at the end of the cable, the proposed method showed a good result in estimating the time delay.

  • PDF

Design of a Time-to-Digital Converter without Delay Time (지연시간 없는 시간-디지털 신호 변환기의 설계)

  • Choe, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.323-328
    • /
    • 2001
  • A new time-to-digital converter is proposed which is based on a capacitor and a counter. The conventional time-to-digital converter requires rather longer processing time than the input time interval to obtain an accurate digital output. The resolution of the converted digital output is constant independent on the input time interval. However this study proposes the circuit in which the converted digital output can be obtained without delay time, and both the input time interval and the resolution can be easily improved through controlling passive device parameters.

  • PDF

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

An Interval Algebra-based Modeling and Routing Method in Bus Delay Tolerant Network

  • Wang, Haiquan;Ma, Weijian;Shi, Hengkun;Xia, Chunhe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1376-1391
    • /
    • 2015
  • In bus delay-tolerant networks, the route of bus is determinate but its arrival time is indeterminate. However, most conventional approaches predict future contact without considering its uncertainty, which makes a limitation on routing performance. A novel approach is proposed by employing interval algebra to characterize the contact's uncertainty and time-varying nature. The contact is predicted by using the Bayesian estimation to achieve a better routing performance. Simulation results show that this approach achieves a good balance between delivery latency and delivery ratio.

A Study on the Improvement a Lateral Resolution of the Ultrasound Imaging System (초음파 영상장치에서 측방향 해상도 향상에 관한 연구)

  • 이후정;이행세
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 1988
  • In this paper, a new focusing method, to be called the pipelined sampled delay focusing (PSDF), is implemented. This method improves the lateral resolution in ultrasound imaging system. In PSDF, the analog belay lines are no longer necessary because sampling sum process can replace the conventional delay sum process. Also, the method offers continuous dynamic focusing on the resolution pixel basis, and eliminates the constraint that the maximum delay time is less than the sampling interval. Second order sampling is adopted in order to extend the sampling interval.

  • PDF