References
- M. Ramesh, S. Narayanan, Chaos control of Bonhoeffer-van der Pol oscillator using neural networks, Chaos Soliton Fract., Vol.12, pp. 2395-2405, 2001 https://doi.org/10.1016/S0960-0779(00)00200-9
- M. Cannas, S. Cincotti, M. Marchesi, F. Pilo, Learning of Chua's circut attactors by locally recurrent neural networks, Chaos Soliton Fract., Vol.12, pp.2109-2115, 2001 https://doi.org/10.1016/S0960-0779(00)00174-0
- K. Oawara, L.T. Fan, A. Tsutsumi, T. Yano, K. Kuramoto, K. Yoshida, An articial neural network as a model for chaotic behavior of a therr-phase fluidized bed, Chaos Soliton Fract., Vol. 13, pp.353-362, 2002 https://doi.org/10.1016/S0960-0779(00)00250-2
- J. Cao, Global asymptotic stability of neural networks with transmission delays, Int. J. Syst. Sci., Vol.31 , pp.1313-1316, 2000 https://doi.org/10.1080/00207720050165807
- S. Arik, An analysis of global asymptotic stability of delayed cellular neural networks, IEEE T. Neural Network, Vol.13, pp.1239-1242, 2002 https://doi.org/10.1109/TNN.2002.1031957
- S. Arik, An improved global stability result for delayed cellular neural networks, IEEE T. Circuits-I, Vol.49, pp.1211-1214, 2002 https://doi.org/10.1109/TCSI.2002.801264
- S. Ruan, R.S. Filfil, Dynamics of a two-neuron system with discrete and distributed delays, Physica D, Vol.191 , pp.323-342, 2004 https://doi.org/10.1016/j.physd.2003.12.004
- J.H. Pak, A new stability analysis of delayed cellular neural networks, Appl. Math. Comput., Vol.181, pp.200-205, 2006 https://doi.org/10.1016/j.amc.2006.01.024
- J.H. Park, A delay-dependent asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays, Chaos Soliton Fract., Vol.33, pp.436-442. 2007 https://doi.org/10.1016/j.chaos.2006.01.015
- J.H. Park, An analysis of global robust stability of uncertain cellular nerual networks with discrete and distributed delays, Chaos Soliton Fract., Vol.32, pp.800-807, 2007 https://doi.org/10.1016/j.chaos.2005.11.106
- S. Xu, J. Lam, D.W.C. HO, A new LMI conditions for delay-dependent asymptotic satbility of delayed hopfield neural networks, IEEE T Circuit-II., Vol.53, pp.230-234, 2006 https://doi.org/10.1109/TCSII.2005.857764
-
S. Xu, J. Lam, A new approach to exponential stability analysis of neural networks with time-var
${\gamma}$ ing delays, Neural Network., 19, 76-83(2006) https://doi.org/10.1016/j.neunet.2005.05.005 - A. Chen, J. Cao, L. Huang, An Estimation of upper bound of delays for global asymptotical stability of delayed Hopfield neual networks, IEEE Trans. Circuits and Syst. I, Vol.49, pp.1028-1032, 2002 https://doi.org/10.1109/TCSI.2002.800841
- Q. Zang, X. Wei, J. Xu, Delay-dependent exponential stability of cellular neural networks with time-varying delays, Chaos Soliton Fract., Vol.23, pp.1363-1369, 2005 https://doi.org/10.1016/S0960-0779(04)00391-1
- H. Yang, T. Chu, C. Zhang, Exponential stability of neural networks with variable delays via LMI approach, Chaos Soliton Fract., Vol.30, pp.133-139, 2006 https://doi.org/10.1016/j.chaos.2005.08.134
- L. Rong, LMI-based criteria for robust stability of Cohen-Grossberg neural networks with delay, Physics Lett. A, Vol.339, pp.63-73, 2005 https://doi.org/10.1016/j.physleta.2005.03.023
- W. Wang, J. Cao, LMI-based criteria for globally robust stability of delayed Cohen-Grossberg neural networks, IEE Proc.-Control Theory Appl., Vol.53, pp.397-402, 2006
- N. Qzcan, S. Arik, Global robust stability analysis of neural networks with multiple time delays, IEEE T. Circuit-I, Vol.53, pp.166-176, 2006 https://doi.org/10.1109/TCSI.2005.855724
- J. Cao, J. Wang, Global robust asymptotic and robust stability of recurrent neural networks with time delays, IEEE Trans. Circuits Syst.-Fundam.Theory Appl., Vol.52, pp.417-426, 2005 https://doi.org/10.1109/TCSI.2004.841574
- H. Liu, G. Chen, Delay-dependent stability for neural networks with time-varying delay, Chaos Soliton Fract., Vol.33, pp.171-177, 2007 https://doi.org/10.1016/j.chaos.2006.01.025
- S. Haykin, Neural Networks - A Comprehensive Foundation, Prentice-Hal, NJ, 1998
- J. Zhang, P. Shi, J Qiu, Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear Anal Real, Vol8, pp.1349-1357, 2007 https://doi.org/10.1016/j.nonrwa.2006.06.010
- H. Huang, G. Feng, Delay-dependent stability for uncertain stochastic nerual networks with time-varying delay, Phsyica A, Vol.381, pp.93-103, 2007 https://doi.org/10.1016/j.physa.2007.04.020
- H. Huang, G. Feng, Corrigendum to 'Delay-dependent stability for uncertain stochastic neural networks with time-varying delay'. Physica A doi:10.1016/j.physa2007.10.016(2007)
- V.L Karitonov, S.-I. Niculescu, On the stability of linear systems with uncertain delay, IEEE T. Automat Contr. Vol.48, pp.127-132, 2003 https://doi.org/10.1109/TAC.2002.806665
- D. Yue, C. Pang, G.Y. Tang, Guaranteed cost control of linear systems over networks with state and input quantisations, IEE P.-Contr. Ap. Vol.153, pp.658-664, 2006 https://doi.org/10.1049/ip-cta:20050294
- W. Michies, V.V. Assche, S.-I. Niculescu, Stabilization of time-delay systems with a controlled time varying delay and applications, IEEE T. Automat Contr. Vol.50, pp.493-504, 2005 https://doi.org/10.1109/TAC.2005.844723
- K.W. Yu, C.H. Lien, Stability criteria for uncertain neural systems with interval time-varying delays, Chaos Soliton Fract. doi:10.1016/j.chaos.2007.01.002, 2007
- S. Boyd, L. El. Ghanoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, SIAM, 1994
- K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia, December, 2000
- L. Arnold, Stochastic Differential Equations Theory and Applications, Wiley, New York, 1972
- X. Mao, Stochastic Differential Equations and Their Applications, Chichester, Horwood, UK, 1997
- R.Z. Khasminskii, Stochastic Stability of Differential Equations. Alphen aan den Rjin, Sjithoffand Noor, Khasminskiidhoff, 1980
- P. Gahinet, A. Nemirovskii, A. Laub, M. Chliali, LMI Toolbox, The Mathworks, Massachusetts, 1995