• Title/Summary/Keyword: delay(control delay

Search Result 3,488, Processing Time 0.037 seconds

Improved Nonlinear Speed Control of PM Synchronous Motor Using Time Delay Control

  • Baik, In-Cheol
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.197-204
    • /
    • 2003
  • An improved nonlinear speed control of a permanent magnet synchronous motor (PMSM) is presented A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived Using this model, to overcome the drawbacks of conventional nonlinear control scheme, the improved nonlinear control scheme which employs time delay control (TDC) scheme is proposed. To show the validity of the proposed control scheme, simulation studies are carried out and compared with the conventional control scheme.

A Register-Controlled Symmetrical Delay Locked Loop using Hybrid Delay Line (하이브리드 딜레이 라인을 이용한 레지스터 콘트롤 Symmetrical Delay Locked Loop)

  • 허락원;전영현
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.87-90
    • /
    • 2000
  • This paper describes a register-controlled symmetrical delay-locked-loop (DLL) using hybrid delay line for use in a high frequency double-data-rate DRAM. The proposed DLL uses a hybrid delay line which can cover two-step delays(coarse/fine delay) by one delay element. The DLL dissipate less power than a conventional dual-loop DLL which use a coarse and a fine delay element and control separately. Additionally, this DLL not only achieves small phase resolution compared to the conventional digital DLL's when it is locked but it also has a great simple delay line compared to a complex dual-loop DLL.

  • PDF

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF

A Call Admission Control Scheme to Guarantee a Required Delay in the Wireless Mesh Networks (무선메쉬네트워크에서 지연 성능 보장을 위한 호 접속 제어 방안)

  • Jeong, Dae-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1174-1185
    • /
    • 2012
  • This paper proposes a call admission control scheme for delay guarantee in the wireless mesh networks. The admission of a new call is determined based on the expected delay inferred from the class level available bandwidth at nodes on the path. All nodes under the effects of the new call are considered in designing the call admission control scheme to maintain the delay guarantee of the pre-existing traffic. An effective technique for estimating the available bandwidth of the neighbor nodes is proposed with no addition of message interchanges. The class-level delay control is mainly performed by the queueing discipline while keeping the MAC operation simple. Simulations are performed to show the validity of the proposals. We observe acceptable performances in delay expectation with the addition of new calls. We also show that the proposed call admission control is helpful in guaranteeing the delay performances.

Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method (시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

Design of a Robust Controller for Position Control of a Small One-Link Robot Arm with Input Time-Delay (입력 시간지연이 존재하는 소형 1축 로봇 팔 위치제어를 위한 강인 제어기 설계)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1179-1185
    • /
    • 2010
  • This paper deals with a robust controller design problem for a small one-link robot arm system subject to input time delay and load variations. The uncertain parameters of the system are considered as a disturbance input. A disturbance observer(DOB) has been designed to alleviate disturbance effects and to compensate performance degradation owing to the time-delay. This paper employs a new DOB structure for non-minimum phase systems together with the Smith predictor. We propose a new controller for reducing the both effects of disturbance and time-delay. In order to test the performance of proposed controller, four different other control laws are compared with the proposed one by computer simulations. The simulation results show the effectiveness of the proposed control method.

Stabilizing Controller Design for Time-delay Singularly Perturbed Systems by H Norm and Lambert W Function (시간지연을 갖는 특이 섭동 시스템에서 H놈과 램버트 W 함수를 이용한 안정화 제어기 설계)

  • Kim, Beomsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1144-1150
    • /
    • 2013
  • The stabilizing controller design problem of time-delay singularly perturbed systems is considered. The proposed approach is based on the $H_{\infty}$ norm and the composite control method. A sufficient condition for the stability of the time-delay slow subsystem is presented. Using this condition, we can construct the composite control law for the time-delay singularly perturbed system and analysis the system by the matrix Lambert W function. Illustrated examples are presented to demonstrate the validity and applicability of the proposed method.

Delay Dependent Fuzzy H Control of Radar Gimbal Stabilization System with Parameter Uncertainty and Time Delay (파라미터 불확실성 및 시간지연을 갖는 레이더 김벌 안정화 시스템의 지연종속 퍼지 H 제에)

  • Kim, Tae-Sik;Lee, Hae-Chang;Lee, Kap-Rai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.920-929
    • /
    • 2005
  • This paper presents controller design method for nonlinear radar gimbal system with parameter uncertainty and time delay. In order to consider nonlinearity of gimbal bearing frictional torque, we firstly represent fuzzy model for the nonlinear gimbal system, which is achieved by fuzzy combination of linear models through nonlinear fuzzy membership functions. And secondly we propose a delay dependent fuzzy $H_\infty$ controller design method for the delayed fuzzy model with parameter uncertainty and design radar gimbal controller. The designed controller stabilize gimbal system and guarantee $H_\infty$ performance. A computer simulation is given to illustrate stabilized control performances of the designed controller.

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

Time-Delayed and Quantized Fuzzy Systems: Stability Analysis and Controller Design

  • Park, Chang-Woo;Kang, Hyung-Jin;Kim, Jung-Hwan;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.274-284
    • /
    • 2000
  • In this paper, the design methodology of digital fuzzy controller(DFC) for the systems with time-delay is presented and the qualitative effects of the quantizers in digital implementation of a fuzzy controllers are investigated. We propose the fuzzy feed-back controller whose output is delayed with unit sampling period and period and predicted. the analysis and the design problem considering time-delay become very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Furthermore, we analyze the stability of the quantized fuzzy system. Our results prove that when quantization os taken into account, one only has convergence to some small neighborhood about origin. We develop a fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of time-delay and quantization effect. By using the proposed method, we analyze the quantization effect to the system and design a DFC which guarantees the stability of the control system in the presence of time-delay.

  • PDF