• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.037 seconds

Optimization Routing Model for Installation of Clustered Engineering Obstacles with Precedence Constraint (선행제약을 고려한 권역단위 공병장애물 설치경로 최적화 모형)

  • Dongkeun Yoo;Suhwan Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • This paper presents a path planning optimization model for the engineering units to install obstacles in the shortest time during wartime. In a rapidly changing battlefield environment, engineering units operate various engineering obstacles to fix, bypass, and delay enemy maneuvers, and the success of the operation lies in efficiently planning the obstacle installation path in the shortest time. Existing studies have not reflected the existence of obstacle material storage that should be visited precedence before installing obstacles, and there is a problem that does not fit the reality of the operation in which the installation is continuously carried out on a regional basis. By presenting a Mixed Integrer Programming optimization model reflecting various constraints suitable for the battlefield environment, this study attempted to promote the efficient mission performance of the engineering unit during wartime.

Prediction of Hydrodynamic Coefficients for Underwater Vehicle Using Rotating Arm Test (강제선회시험을 이용한 수중운동체의 유체력 미계수 추정)

  • Jeong, Jae-Hun;Han, Ji-Hun;Ok, Jihun;Kim, Hyeong-Dong;Kim, Dong-Hun;Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • In this study, hydrodynamic coefficients were obtained from a Rotating Arm (RA) test, which is one of the captive model tests used to provide accurate coefficients in the control motion equation of an underwater vehicle. The RA test was carried out at the RA facility of ADD (Agency for Defense Development), and the forces and moments acting on the underwater vehicle were measured using a six-axis waterproof gage. A multiple regression analysis was used in the analysis of the measured data. The experimental results were also verified by comparison with the theoretical values of the previous linear coefficients. In addition, the stability indices in the horizontal plane were calculated using the linear and nonlinear coefficients, and the dynamic stability of the underwater vehicle was estimated to have a good dynamic performance with a depth ratio of 6.0.

Active Sonar Classification Algorithm based on HOG Feature (HOG 특징 기반 능동 소나 식별 기법)

  • Shin, Hyunhak;Park, Jaihyun;Ku, Bonhwa;Seo, Iksu;Kim, Taehwan;Lim, Junseok;Ko, Hanseok;Hong, Wooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.

A Study on the Allocation and Engagement Scheduling of Air Defense Missiles by Using Mixed Integer Programming (혼합정수계획법을 이용한 요격미사일의 할당 및 교전 일정계획에 관한 연구)

  • Lee, Dae Ryeock;Yang, Jaehwan
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.109-133
    • /
    • 2015
  • This paper considers the allocation and engagement scheduling of air defense missiles by using MIP (mixed integer programming). Specifically, it focuses on developing a realistic MIP model for a real battle situation where multiple enemy missiles are headed toward valuable defended assets and there exist multiple air defense missiles to counteract the threats. In addition to the conventional objective such as the minimization of surviving target value, the maximization of total intercept altitude is introduced as a new objective. The intercept altitude of incoming missiles is important in order to minimize damages from debris of the intercepted missiles and moreover it can be critical if the enemy warhead contains an atomic or chemical bomb. The concept of so called the time window is used to model the engagement situation and a continuous time is assumed for flying times of the both missiles. Lastly, the model is extended to simulate the situation where the guidance radar, which guides a defense missile to its target, has the maximum guidance capacity. The initial mathematical model developed contains several non-linear constraints and a non-linear objective function. Hence, the linearization of those terms is performed before it is solved by a commercially available software. Then to thoroughly examine the MIP model, the model is empirically evaluated with several test problems. Specifically, the models with different objective functions are compared and several battle scenarios are generated to evaluate performance of the models including the extended one. The results indicate that the new model consistently presents better and more realistic results than the compared models.

The Multi-legged Small Sized Robot Drive using Piezoelectric Benders (압전벤더를 이용한 소형 다족 로봇 구동원)

  • Park, Jong-man;Kim, Young-hyun;Jeong, Won-chan;Ryu, Jeong-min
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.444-449
    • /
    • 2020
  • I proposed small ambulatory robot actuators using piezoelectric benders. In order to make the motion of the biomimetic robot legs similar to the movements of the cockroaches or similar insects, two pairs of legs in the diagonal direction in the four leg structures are required to make the same movement. And elliptical displacement is realized by taking into account horizontal and vertical displacement of multimode oscillations and driving them by electrical signals with differences step by step, for example of 90° the T-shaped robot actuator showed wide range of speed (From 2 mm/sec. up to 266 mm/sec.) and ability of transportation (up to 10 g with 50 mm/s). Locomotive performance of the robot was competitive to the preceding robots, and moreover, the modular type actuators of a segmented myriapods robot could be added and removed for different tasks or performances.

Application of the Small UAV Defense System (무인항공기 대응체계 도입 방안)

  • Park, Jehong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.145-152
    • /
    • 2017
  • As a popularization of small UAS to have improved flight performance and easiness of controlling, the UAS industry is increased and also small UAS is to be a new threat for airspace security of national strategic infrastructure. Rising the new threat makes the negative side effect of small UAS operation. This phenomena brought to new R&D needs "defense system" for small UAS/UAV - called Anti-Drone. The paper addressed case study of defects, accidents and threats by small UAS/UAV as world wide level, and research and development trend of UAS defense system as each technical category - CONOP (Concept of Operation), identification/recognition method and control/supremacy techniques. As a result, this suggests the direction what and where drone defense system should be applied first and required for Korean society in the view of society system (regime) and a point of view for minimizing side effect as UAS popularization.

A Study on the Optimal Allocation of Maintenance Personnel in the Naval Ship Maintenance System (해군 함정 정비체계 최적 정비인력 할당 모형 연구)

  • Kim, Seong-Woo;Yoon, Bong-Kyoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1853-1862
    • /
    • 2015
  • Naval maintenance system carries out repairs of battle ships. Korean Navy has four maintenance stations to maximize the readiness of the battle ships. Since each station can provide different services according to characteristics(specific size of ships, type of maintenances) and the maintenance ability of stations is predetermined, it has been one of complex problems for the Korean Navy to find the optimal resource allocation. We investigate the operation of the stations from the perspective of the human resource allocation which plays crucial role in the performance of the maintenance stations. Using a queueing model and optimization technique, we present a way to derive the optimal personnel allocation which minimize the waiting number of battle ships at each station, leading to the improvement of the military readiness in the Korean Navy.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

A Study on the Critical Success Factors for the Efficient Management of Defense Acquisition Program (효율적인 무기체계 획득을 위한 사업 관리 핵심성공요인 연구)

  • Jeon, Nam-Hee;Kim, Byung-Sam;Kim, Dong-Ho;Gim, Gwang-Yong
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.53-69
    • /
    • 2010
  • The long-term purpose of Military Acquisition Program Management (MAPM) is to fulfill requested performance, budget, and timing of military capability building. The Defense Acquisition Program Administration was established in 2006 and it adopted Integrated Control System. Moreover, there have no much studies done to examine the condition of Defense Capability Improvement Project in Korea through an empirical research although there are sixty one organizations are operating currently under Defense Capability Improvement Project. The objective of this study is to recognize Military Acquisition Program Management as a single project and to critically review relationship between Critical Success Factors (CSF) and Military Acquisition Program Management. Accordingly, three determinants to lead to successful Military Acquisition Program Management are "Communication" "User Participation" and "User Requirement." This study also demonstrates that Critical Success Factors have distinctive influences on successful Military Acquisition Program Management based on characteristic, size and phase of project. In retrospect, it is meaningful that Integrated Project Team (IPT) could classify priority of management according to characteristic, size and phase of project in the course of implementation.

Design of K-Band Radar Transceiver for Tracking High Speed Targets (고속 표적 추적을 위한 K-대역 레이다 송수신기 설계)

  • Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Lee, Jong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1304-1310
    • /
    • 2010
  • This study is to design FMCW radar transceiver of K-band which is used to detect and track approaching high speed targets with low altitude. The transmitter needs high output power due to small RCS targets and wide beamwidth of transmit antenna. Multi-channel receivers are required to detect and track targets by interferometer method. Transmitter consists of high power amplifier, waveguide switch, and frequency up-converter. Receiver is composed of five channel receivers, up and down converters, X-band local oscillator and waveform generator. Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it is manufactured by using industrial RF components. The performance parameters are measured through experiment. In the experiment, transmitting power and receiver gain were measured with 39.64 dBm and 29.1 dB, respectively. All other parameters in the specification were satisfied as well.