DOI QR코드

DOI QR Code

The Multi-legged Small Sized Robot Drive using Piezoelectric Benders

압전벤더를 이용한 소형 다족 로봇 구동원

  • Received : 2020.09.28
  • Accepted : 2020.10.29
  • Published : 2020.10.30

Abstract

I proposed small ambulatory robot actuators using piezoelectric benders. In order to make the motion of the biomimetic robot legs similar to the movements of the cockroaches or similar insects, two pairs of legs in the diagonal direction in the four leg structures are required to make the same movement. And elliptical displacement is realized by taking into account horizontal and vertical displacement of multimode oscillations and driving them by electrical signals with differences step by step, for example of 90° the T-shaped robot actuator showed wide range of speed (From 2 mm/sec. up to 266 mm/sec.) and ability of transportation (up to 10 g with 50 mm/s). Locomotive performance of the robot was competitive to the preceding robots, and moreover, the modular type actuators of a segmented myriapods robot could be added and removed for different tasks or performances.

본 연구에서는 구조가 간단하고 소형화 제작이 용이한 소형보행 로봇용 구동원을 제안한다. 두 개의 직교방향 모멘트를 핀조인트 구조의 다리에서 회전벡터로 변환하여 이동표면에 타원궤적이 발생하도록 설계하였고, 다른 구동원 대비 효율성과 에너지 밀도가 높은 압전 세라믹을 활용하여 압전벤더 액츄에어터를 제작하였다. 또한 사용된 압전 벤더 액츄에이터는 유한요소해석을 통한 자체 무게대비 최대의 출력을 낼 수 있도록 재질 및 형상을 최적화하였다. 두 개의 다리로 구성된 단위 액츄에이터는 모듈화 되어 여러 개의 액츄에이터로 결합이 가능하고 매운 빠른 속도로 이동 및 거친 지형에서도 운용이 가능하다. 실험결과로 T자형 로봇 액츄에이터의 다양한 속도 (2 mm/sec.에서 266 mm/sec까지)와 운송능력(최대 10 g에서 50 mm/s까지)을 확인 하였다.

Keywords

References

  1. K Ikuta, "Micromachine-its current state and future micromachine system," Journal of Robotics and Mechatronics, pp. 60-64, 1991.
  2. A. M. Flynn, R. A. Brooks, W. M. Wells and D. S. Barrelt, "Intelligence for miniature robots," Sensors Actuators, Vol. 20, pp. 187-96, 1989. https://doi.org/10.1016/0250-6874(89)87117-3
  3. R. G. Gilbertson and Journal D. Busch, "A survey of micro-actuator technologies for future spacecraft missions," in First Presented at the Conference, New York: NY, pp. 231, Aug. 1994.
  4. Takeshi Morita, Hiroaki Murakami, Takami Yokose, and Hiroshi Hosaka, "A miniaturized resonant-type smooth impact drive mechanism actuator," Sensors and Actuators A: Physical, Vol. 178, pp. 188-192, Feb. 2012. https://doi.org/10.1016/j.sna.2012.02.017
  5. M. H. Park, H. H. Chong, B. H. Lee, S. Jeong, and T. G. Park, "Study on the new type of piezoelectric actuator utilizing smooth impact drive mechanism," Ferroelectrics, Vol. 500, 218-228, Oct. 2016. https://doi.org/10.1080/00150193.2016.1216228
  6. J. M. Park and C. H. Song, "Study on the small sized robots actuator using piezoelectric ceramic bender," Journal of the Korea Academia-Industrial cooperation Society, Vol. 21, No. 5, pp 337-343, May 2020. https://doi.org/10.5762/KAIS.2020.21.5.337
  7. T. Ebefors, J. U. Mattsson, E. Kalvesten, and G. Stemme, "A walking silicon micro-robot," in The 10th International Conference on Solid-State Sensors and Actuators, Sendai: Japan, pp.1202-205, Jun. 1999.
  8. M. Goldfarb, M. Gogola, G. Fischer, and E. Garcia, "Development of a piezoelectrically-actuated mesoscale robot quadruped," Journal of Micromechatronics, Vol. 1, No. 3, pp.205-219, Jan. 2001. https://doi.org/10.1163/156856301760132114
  9. A. Yumaryanto, J. An, and S. Lee, "A cockroach-inspired hexapod robot actuated by lipca," in IEEE Conference on Robotics, Automation and Mechatronics, Bangkok: Thailand, pp. 1-6, Jun. 2006.
  10. A. Hoover, E. Steltz, and R. Fearing, "Roach: An autonomous 2.4g crawling hexapod robot," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice: France, pp.136-139, Sep. 2008.