• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.031 seconds

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

A Study of Rupture Pressure for Membrane Type Pulse Separation Device of Dual Pulse Rocket Motor (이중펄스 추진기관의 펄스분리장치 파열압력 분석기법 연구)

  • Kim, Seil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.98-106
    • /
    • 2022
  • To develop reliable dual pulse rocket motor, vacuum ignition performance at high altitude and design stability for rupture pressure of the Pulse Separation Device(PSD) are required. In this study, rupture pressure analysis method for the membrane type PSD of the dual pulse rocket motor was developed. The PSD rupture pressure formulation was derived from strain-pressure relationships. The PSD vacuum rupture test apparatus and the PSD 1 second vacuum ignition test apparatus were developed, which can simulate the high altitude vacuum environment. Rupture pressure of PSD was analyzed by conducting the PSD vacuum rupture test, and design values of PSD were derived. Finally, vacuum ignition performance and rupture pressure of the designed PSD were validated with PSD 1 second vacuum ignition test.

Field Performance of Resistant Potato Genotypes Transformed with the EFR Receptor from Arabidopsis thaliana in the Absence of Bacterial Wilt (Ralstonia solanacearum)

  • Dalla-Rizza, Marco;Schvartzman, Claudia;Murchio, Sara;Berrueta, Cecilia;Boschi, Federico;Menoni, Mariana;Lenzi, Alberto;Gimenez, Gustavo
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Bacterial wilt caused by the pathogen Ralstonia solanacearum is a devastating disease of potato crops. Harmonizing immunity to pathogens and crop yield is a balance between productive, economic, and environmental interests. In this work, the agronomic performance of two events of potato cultivar INIA Iporá expressing the Arabidopsis thaliana EFR gene (Iporá EFR 3 and Iporá EFR 12) previously selected for their high resistance to bacterial wilt was evaluated under pathogen-free conditions. During two cultivation cycles, the evaluated phenotypic characteristics were emergence, beginning of flowering, vigor, growth, leaf morphology, yield, number and size of tubers, analyzed under biosecurity standards. The phenotypic characteristics evaluated did not show differences, except in the morphology of the leaf with a more globose appearance and a shortening of the rachis in the transformation events with respect to untransformed Iporá. The Iporá EFR 3 genotype showed a ~40% yield decrease in reference to untransformed Iporá in the two trials, while Iporá EFR 12 did not differ statistically from untransformed Iporá. Iporá EFR 12 shows performance stability in the absence of the pathogen, compared to the untransformed control, positioning it as an interesting candidate for regions where the presence of the pathogen is endemic and bacterial wilt has a high economic impact.

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction (지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발)

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.510-518
    • /
    • 2023
  • This paper introduces a MATLAB graphical user interface (GUI) based software for performance analysis of navigation message and wide area differential correction of regional navigation satellite system (RNSS). This software was developed to analyze satellite orbit/clock-related performance of navigation message and wide area differential correction simulating RNSS for regions near Korea based on different distributions of monitor and reference stations. As a result of software operation, navigation message and wide area differential correction are given as output in MATLAB file format. From the analysis of output, it was confirmed that valid navigation message and wide area differential correction could be generated from the results about statistical feature of orbit and clock prediction errors, cm-level fitting errors for navigation message parameters, and 81.9% enhancement in range error for wide area differential correction.

Ambidextrous Use of Information Systems in an Organization (조직 내 정보시스템의 양면적 사용)

  • Hyunjeong Kang;Mihee Kim
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.167-182
    • /
    • 2020
  • Ambidexterity in organizations, in general, is interpreted as flexibility that enables organizational innovation, which is important for survival in a competitive market. It applies to individual workers as well since the ambidexterity of explorational and exploitational IS use will enable the flexible transition between dynamic and operational work, and hence, increase the work performance. The current study will therefore investigate the individual levels of exploratory and exploitative IS use, as well as the complementary relationship between exploratory and exploitative IS use. In a third step, the differential influence of IS on work performance will be evaluated. The current study validated that complementary fit of IS use exploration and IS use exploitation increases performance. Polynomial regression and surface analysis are used to validate the incongruence of IS use pattern. They showed that the incongruence of ambidexterity is composed of two types of divergent vs. convergent ambidexterity which depends on the type of work that need dynamic or operational capability.

A Study on Establishing EMP Protection Performance Standards and Improving Laws and Regulations for Military Facilities and Equipment (군사시설, 장비의 EMP 방호성능 기준 정립 및 법·제도 개선 방안연구)

  • Sangjun Park;Kukjoo Kim;Hoedong Kim
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.219-229
    • /
    • 2024
  • The application of 4th Industrial Revolution technologies in the defense sector is accelerating, leading to the rapid incorporation of information and communication technologies (ICT) into military systems. The biggest threat to these ICT-based military systems is an electromagnetic pulse (EMP) attack, which can result from nuclear explosions or EMP bombs. North Korea's ongoing nuclear advancements and EMP bomb capabilities pose a critical threat, necessitating South Korea's preparedness for such attacks to ensure the effective operation of its ICT-based military systems. Despite this urgency, the South Korean military currently lacks comprehensive standards for EMP protection, relying only on the design criteria for EMP protection facilities for buildings. This gap highlights the absence of sufficient legal and regulatory measures and the lack of focused research to develop EMP protection performance standards for safeguarding military systems. Therefore, this paper aims to analyze existing EMP protection performance standards and relevant laws and regulations. It proposes improvements and establishes necessary standards to enhance the EMP resilience of military facilities and equipment.

A Study on the VADAMA improvements of latency performance through control message collision avoid in MF-TDMA satellite network

  • Su-Hoon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.115-123
    • /
    • 2024
  • This paper proposes a method to reduce the delay time caused by control message conflicts in VADAMA (Virtual Allocation Demand Assigned Multiple Access) technology, which is a virtual allocation based on-demand multiple access technology in MF-TDMA (Multi-Frequency Time Division Multiple Access) satellite network. Traditionally, satellite networks have had the problem that all network transmissions have long delay times due to control messages. In this study, in order to improve the delay time caused by terminal control message conflicts in VADAMA technology, the concept of virtual allocation is used to reduce the delay time. VADAMA-PTR (VADAMA Periodic Transmission) divides all terminals into subnets and transmits control. The method is proposed, and the performance analysis of the existing DAMA technology, delay time and data processing rate is performed using Matlab. The results show that the performance is improved.

Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

  • Ren, M.;Zhang, S.H.;Zeng, X.F.;Liu, H.;Qiao, S.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1742-1750
    • /
    • 2015
  • As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets ($7.96{\pm}0.26kg$) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.