References
- AOAC. 2007. Official Methods of Analysis. 18th ed. AOAC international, Gaithersburg, MD, USA.
- Calder, P. C. and P. Yaqoob. 1999. Glutamine and the immune system. Amino Acids 17:227-241. https://doi.org/10.1007/BF01366922
- Carr, L. E., A. Kelman, S. G. Wu, R. Gopaul, E. Senkevitch, A. Aghvanyan, A. M. Turay, and K. A. Frauwirth. 2010. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185:1037-1044. https://doi.org/10.4049/jimmunol.0903586
- Con, J., B. Joseph, N. Kulvatunyou, A. Tang, T. O'Keeffe, J. L. Wynne, R. S. Friese, P. Rhee, and R. Latifi. 2011. Evidencebased immune-modulating nutritional therapy in critically ill and injured patients. Eur. Surg. 43:13-18. https://doi.org/10.1007/s10353-011-0588-8
- Cummins, A. G. and F. M. Thompson. 2002. Effect of breast milk and weaning on epithelial growth of the small intestine in human. Gut 51:748-754. https://doi.org/10.1136/gut.51.5.748
- Doppenberg, J. and P. J. van der Aar. 2010. Dynamics in Animal Nutrition. Wageingen Accademic Publishers, Wageingen, The Netherlands. Page 31-36.
- Dugan, M. E. R., D. A. Knabe, and G. Wu. 1994. Glutamine and glucose metabolism in intraepithelial lymphocytes from preand post-weaning pigs. Comp. Biochem. Phys. B. Comp. Biochem. 109:675-681. https://doi.org/10.1016/0305-0491(94)90130-9
- Evoy, D., M. D. Lieberman, T. J. Fahey, and J. M. Daly. 1998. Immuninutrition: The role of arginine. Nutrition 14:611-617. https://doi.org/10.1016/S0899-9007(98)00005-7
- Figueroa, J. L., A. J. Lewis, P. S. Miller, R. L. Fischer, R. S. Gomez, and R. M. Diedrichsen. 2002. Nitrogen metabolism and growth performance of gilts fed standard maize-soybean meal diets or low-crude protein, amino acid supplemented diets. J. Anim. Sci. 80:2911-2919. https://doi.org/10.2527/2002.80112911x
- Guay, F., S. M. Donovan, and N. L. Trottier. 2006. Biochemical and morphological developments are practically impaired in intestinal mucosa from growing pigs fed reduced-protein diets supplemented with crystalline amino acids. J. Anim. Sci. 84:1749-1760. https://doi.org/10.2527/jas.2005-558
-
Guy-Grand, D, J. P. DiSanto, P. Henchoz, M. Malassis-Seris, and P. Vassalli. 1998. Small bowel enteropathy: role of interepithelial lymphocytes and of cytokines (IL-12,
$INF-{\gamma}$ , TNF) in the induction of epithelial cell death and renewal. Eur. J. Immunol. 28:730-744. https://doi.org/10.1002/(SICI)1521-4141(199802)28:02<730::AID-IMMU730>3.0.CO;2-U - Heo, J. M., J. C. Kim, C. F. Hansen, B. P. Mullan, D. J. Hanpson, and J. R. Pluske. 2008. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr. 62:343-358. https://doi.org/10.1080/17450390802327811
- Htoo, J. K., B. A. Araiza, W. C. Sauer, M. Rademacher, Y. Zhang, M. Cervantes, and R. T. Aijlstra. 2007. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digest of early-weaned pigs. J. Anim. Sci. 85:3303-3312. https://doi.org/10.2527/jas.2007-0105
- Kerr, B. J. 2003. Dietary manipulation to reduce environmental impact. Page139-158 in 9th International Symposium on Digestive Physiology in Pigs, May 14-17, 2003; Banff, Alberta, Canada.
- Kinnebrew, M. A. and E. G. Pamer. 2012. Innate immune signaling in defense against intestinal microbes. Immunol. Rev. 245:113-131. https://doi.org/10.1111/j.1600-065X.2011.01081.x
- Lalles, J. P., P. Bosi, H. Smidt, and C. R. Stokes. 2007. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 66:260-268. https://doi.org/10.1017/S0029665107005484
- Li, P., Y. Yin, D. Li, S. W. Kim, and G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237-252. https://doi.org/10.1017/S000711450769936X
- Lordelo, M. M., A. M. Gaspar, L. Le Bellego, and J. P. B. Freire. 2008. Isoleucine and valine supplementation of a low-protein corn-wheat-soybean meal-based diet for piglets: growth performance and nitrogen balance. J. Anim. Sci. 86:2936-2941. https://doi.org/10.2527/jas.2007-0222
- Lundqvist, C., V. Baranov, S. Hammarstrom, L. Athlin, and M. L. Hammarstrom. 1995. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int. Immunol. 7:1473-1487. https://doi.org/10.1093/intimm/7.9.1473
- Mao, X., X. Zeng, S. Qiao, G. Wu, and D. Li. 2011. Specific roles of threonine in intestinal mucosal integrity and barrier function. Front Biosci. E3:1192-1200. https://doi.org/10.2741/e322
- McCracken, B. A., H. R. Gaskins, P. J. Ruwe-Kaiser, K. C. Klasing, and D. E. Jewell. 1995. Diet-dependent and dietindependent metabolic responses underlie growth stasis of pigs at weaning. J. Nutr. 125:2838-2845.
- McGuckin, A. M., R. Eri, L. A. Simms, T. H. J. Florin, and G. Radford-Smith. 2009. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis. 15:100-113. https://doi.org/10.1002/ibd.20539
- Miller, B. G., P. S. Jamies, M. W. Smith, and F. J. Bourne. 1986. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. J. Agric. Sci. Camb. 107:579-589. https://doi.org/10.1017/S0021859600069756
- Moore, S. 1963. On the determination of cystine as cysteic acid. J. Biol. Chem. 238:235-237.
- Nabuurs, M. J., A. Hoogendoorn, E. J. V. Molen, and A. L. Van Osta. 1993. Villous height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55:78-84. https://doi.org/10.1016/0034-5288(93)90038-H
- NRC. 1998. Nutrient Requirements of Swine, 10th Edition. National Academy Press, Washington DC, USA.
- NRC. 2012. Nutrient Requirements of Swine, 11th Edition. National Academy Press, Washington DC, USA.
- Nofrarías, M., E. G. Manzanilla, J. Pujols, X. Gibert, N. Majo, J. Segales and J. Gasa. 2006. Effects of spray- dried porcine plasma and plant exreacts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J. Anim. Sci. 84:2735-2742. https://doi.org/10.2527/jas.2005-414
- Nyachoti, C. M., F. O. Omoghenigun, M. Rademacher, and G. Blank. 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acids-supplemented diets. J. Anim. Sci. 84:125-134. https://doi.org/10.2527/2006.841125x
- Oswald, I. P. 2006. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet. Res. 37:359-368. https://doi.org/10.1051/vetres:2006006
- Wijtten, J. A. P., J. van der Meulen, and M. W. A. Verstegen. 2011. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 105:967-981. https://doi.org/10.1017/S0007114510005660
- Pie, S., J. P. Lalle, F. Blazy, J. Laffitte, B. Seve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 124:641-647.
- Pluske, J. R., M. J. Thompson, C. S. Atwood, P. H. Bird, I. H. Williams, and P. E. Hartmann. 1996. Maintenance of villous height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows' whole milk after weaning. Br. J. Nutr. 76:409-422. https://doi.org/10.1079/BJN19960046
- Pomorska-Mol, M. and I. Markowska-Daniel. 2011. Porcine cathelicidins and defensins. Med. Weter 67:20-24.
- Powell, D. J., K. N. Pollizzi, E. B. Heikamp, and M. R. Horton. 2012. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30:39-68. https://doi.org/10.1146/annurev-immunol-020711-075024
- Rose, N., G. Larour, G. Le Digyerher, E. Everno, J. P. Jolly, P. Blanchard, A. Oger, M. Le Dimna, A. Jestin, and F. Madec. 2003. Risk factors for porcine post-weaning multisystemic wasting syndrome (PMWS) in 149 French farrow-to-finish herds. Prev. Vet. Med. 61:209-225. https://doi.org/10.1016/j.prevetmed.2003.07.003
- Santaolalla, R., M. Fukata, and M. T. Abreu. 2011. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 27:125-131. https://doi.org/10.1097/MOG.0b013e3283438dea
- Simone, D. R., F. Vissicchio, C. Mingarelli, C. D. Nuccio, S. Visentin, M. A. Ajmone-Cat, and L. Minghetti. 2013. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to proinflammatory signals. Biochim. Biophys. Acta Mol. Basis Dis. 1832:650-659. https://doi.org/10.1016/j.bbadis.2013.02.001
- Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. F Rivier, A. T. Blisklager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 298:352-363. https://doi.org/10.1152/ajpgi.00081.2009
- Stoll, B., J. Henry, P. J. Reeds, H. Yu, F. Jahoor, and D. G. Burrin. 1998. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 128:606-614. https://doi.org/10.1093/jn/128.3.606
- Tan, B., X. G. Li, X. Kong, R. Huang, Z. Ruan, K. Yao, Z. Deng, M. Xie, I. Shinzato, Y. Yin, and G. Wu. 2009. Dietary Larginine supplementation enhances the immune status in earlyweaned pglets. Amino Acids. 37:323-331. https://doi.org/10.1007/s00726-008-0155-1
- Wang, J. J., L. Chen, P. Li, X. Li, H. Zhou, F. Wang, D. Li, Y. Yin, and G. Wu. 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138:1025-1032. https://doi.org/10.1093/jn/138.6.1025
- Wells, J. M., L. M. P. Loonen, and J. M. Karczewski. 2010. The role of innate signalling in the homeostasis of tolerance and immunity in the intestine. Int. J. Med. Microbiol. 300:41-48. https://doi.org/10.1016/j.ijmm.2009.08.008
- Wu, G. 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128:1249-1252. https://doi.org/10.1093/jn/128.8.1249
- Wu, G. 2009. Amino acids: Metabolism, functions, and nutrition. Amino Acids 37:1-17.
- Yoneda, J., A. Andou, and K. Takehana. 2009. Regulatory roles of amino acids in immune response. Curr. Rheumatol. Rev. 5:252-258. https://doi.org/10.2174/157339709790192567
- Yue, L. Y. and S. Y. Qiao. 2007. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci. 115:144-152.
- Zhang, F., X. Zeng, F. Yang, Z. Huang, H. Liu, X. Ma, and S. Qiao. 2013. Dietary N-carbamylglutamate supplementation boosts intestinal mucosal immunity in Escherichia coli challenged piglets. Plos One. 8(6):e66280. https://doi.org/10.1371/journal.pone.0066280
- Zhu, H. L., Y. L. Liu, X. L. Xie, J. J. Huang, and Y. Q. Hou. 2013. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immun. 19:242-252. https://doi.org/10.1177/1753425912456223
- Zijlstra, R. T., J. Odle, W. F. Hall, B. W. Petschow, H. B. Gelbery, and R. E. Litov. 1994. Effect of orally administered epidermal growth factor on intestinal recovery of neonatal pigs infected with rotavirus. J. Pediatr. Gastroenterol. Nutr. 19:382-390. https://doi.org/10.1097/00005176-199411000-00003
Cited by
- Glutamine metabolism and its effects on immune response: molecular mechanism and gene expression vol.41, pp.1, 2016, https://doi.org/10.1186/s41110-016-0016-8
- Effects of the standardized ileal digestible valine : lysine ratio on performance, milk composition and plasma indices of lactating sows vol.88, pp.8, 2016, https://doi.org/10.1111/asj.12753
- Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models vol.49, pp.8, 2017, https://doi.org/10.1007/s00726-017-2450-1
- Effects of Low-Protein Diets Supplemented with Branched-Chain Amino Acid on Lipid Metabolism in White Adipose Tissue of Piglets vol.65, pp.13, 2017, https://doi.org/10.1021/acs.jafc.7b00488
- Novel metabolic and physiological functions of branched chain amino acids: a review vol.8, pp.1, 2017, https://doi.org/10.1186/s40104-016-0139-z
- mycelia on the growth performance and intestinal immune response and microflora of early-weaned pigs vol.88, pp.9, 2017, https://doi.org/10.1111/asj.12765
- Regulation of intestinal health by branched-chain amino acids pp.13443941, 2017, https://doi.org/10.1111/asj.12937
- Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/9171905
- l-Isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01654
- Advances in low-protein diets for swine vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0276-7
- Branched Chain Amino Acids: Beyond Nutrition Metabolism vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19040954
- Valine Supplementation in a Reduced Protein Diet Regulates Growth Performance Partially through Modulation of Plasma Amino Acids Profile, Metabolic Responses, Endocrine, and Neural Factors in Piglets vol.66, pp.12, 2015, https://doi.org/10.1021/acs.jafc.8b01113
- Fecal Microbiota Transplantation Beneficially Regulates Intestinal Mucosal Autophagy and Alleviates Gut Barrier Injury vol.3, pp.5, 2015, https://doi.org/10.1128/msystems.00137-18
- Isoleucine Plays an Important Role for Maintaining Immune Function vol.20, pp.7, 2015, https://doi.org/10.2174/1389203720666190305163135
- Dietary vitamin E affects small intestinal histomorphology, digestive enzyme activity, and the expression of nutrient transporters by inhibiting proliferation of intestinal epithelial cells within jej vol.97, pp.3, 2019, https://doi.org/10.1093/jas/skz023
- Dietary Branched-Chain Amino Acids Regulate Food Intake Partly through Intestinal and Hypothalamic Amino Acid Receptors in Piglets vol.67, pp.24, 2015, https://doi.org/10.1021/acs.jafc.9b02381
- Valine increases milk fat synthesis in mammary gland of gilts through stimulating AKT/MTOR/SREBP1 pathway† vol.101, pp.1, 2019, https://doi.org/10.1093/biolre/ioz065
- Identification and Structure-Activity Relationship of Intestinal Epithelial Barrier Function Protective Collagen Peptides from Alaska Pollock Skin vol.17, pp.8, 2019, https://doi.org/10.3390/md17080450
- Differential expression, molecular cloning, and characterization of porcine beta defensin 114 vol.10, pp.1, 2015, https://doi.org/10.1186/s40104-019-0367-0
- Citrus Extract Improves the Absorption and Utilization of Nitrogen and Gut Health of Piglets vol.10, pp.1, 2015, https://doi.org/10.3390/ani10010112
- Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model vol.11, pp.2, 2015, https://doi.org/10.1039/c9fo01757g
- Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites vol.12, pp.5, 2015, https://doi.org/10.3390/nu12051434
- Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis vol.12, pp.6, 2015, https://doi.org/10.3390/nu12061562
- Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs vol.20, pp.1, 2015, https://doi.org/10.1080/1828051x.2021.1952911
- Antibiotic-driven intestinal dysbiosis in pediatric short bowel syndrome is associated with persistently altered microbiome functions and gut-derived bloodstream infections vol.13, pp.1, 2015, https://doi.org/10.1080/19490976.2021.1940792
- Chlorogenic Acid Alleviates Colon Mucosal Damage Induced by a High-Fat Diet via Gut Microflora Adjustment to Increase Short-Chain Fatty Acid Accumulation in Rats vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3456542
- Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets vol.11, pp.3, 2015, https://doi.org/10.3390/ani11030642
- Metabolic Homeostasis in Chronic Helminth Infection Is Sustained by Organ-Specific Metabolic Rewiring vol.7, pp.4, 2015, https://doi.org/10.1021/acsinfecdis.1c00026
- Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals vol.27, pp.34, 2015, https://doi.org/10.3748/wjg.v27.i34.5630
- Systematic Review of the Interaction between Nutrition and Immunity in Livestock: Effect of Dietary Supplementation with Synthetic Amino Acids vol.11, pp.10, 2015, https://doi.org/10.3390/ani11102813
- The Protective Effect of Basic Fibroblast Growth Factor in Intestine of db/db Mice: A 1H NMR-Based Metabolomics Investigation vol.20, pp.11, 2015, https://doi.org/10.1021/acs.jproteome.1c00519