• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.031 seconds

Melting of Ti-6Al-4V Alloy Using CaO Crucible and Internal Defects of its Casting (CaO 도가니에 의한 Ti-6Al-4V 합금의 용해와 주조결함)

  • Uchida, Seiju;Kanata, Kinya;Tanaka, Naohiro;Yanagisawa, Osamu
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.314-322
    • /
    • 2004
  • The CaO crucible is expected to serve as a useful tool for melting Ti and its alloys due to its thermodynamic stability. However, tjere still remain problems that need to be resolved in the melting of Ti and its alloys to enable commerical use. The cause of the defects of Ti-6AI-4V alloy castings melted in the CaO crucible were examined and compared with induction skull melting. The key factors of the melting technique using the CaO crucible, affecting the quality of Ti-6AI-4V alloy castings, were investigated. Defects of the Ti-6AI-4V alloy castings are caused by the chemical reduction of CaO by Ti. Pressurizing with argon gas in a vacuum induction chamber is effective for reducing the defects. Preheating of the charged material in the crucible and quick pouring into a mold of lower temperature, just after melting down, are important for produsing sound Ti-6AI-4V castings.

FPGA based System for Pinhole Detection in Cold Rolled Steel (FPGA 기반의 냉연강판 핀홀 검출 시스템)

  • Ha, Sung-Kil;Lee, Jung Eun;Moon, Woo Sung;Baek, Kwang Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.742-747
    • /
    • 2015
  • The quality of steel plate products is determined by the number of defects and the process problems are estimated by shapes of defects. Therefore pinholes defects of cold rolled steel have to be controlled. In order to improve productivity and quality of products, within each production process, the product is inspected by an adequate inspection system individually in the lines of steelworks. Among a number of inspection systems, we focus on the pinholes detection system. In this paper, we propose an embedded system using FPGA which can detect pinholes defects. The proposed system is smaller and more flexible than a traditional system based on expensive frame grabbers and PC. In order to detect consecutive defects, FPGAs acquire two dimensional image and process the image in real time by using correlation of lines. The proposed pinholes detection algorithm decreases arithmetic operations of image processing and also we designed the hardware to shorten the data path between logics due to decreasing propagation delay. The experimental results show that the proposed embedded system detects the reliable number of pinholes in real time.

TFT-LCD Defect Enhancement Using Frequency Sensitivity of HVS (인간 시각시스템의 주파수 감도를 이용한 TFT-LCD 결함 강조)

  • Oh, Jong-Hwan;Park, Kil-Houm
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.20-27
    • /
    • 2007
  • Generally, the TFT-LCD image signal have nonuniform brightness and are composed of largely varying background signal, noise signal and abruptly changing Mura signal within Mura region. In this paper, Mura region enhancing algorithms using the proposed modified-MTF, which describes how human-visual-system's sensitivity varies in frequency domain, is proposed. The validity of the proposed algorithm was demonstrated ideal 1-dimensional signal and also then it was also tested TFT-LCD image. By the experimental results, the proposed algorithm is very effective in TFT-LCD image Mura enhancement.

Growth and photoluminescence characteristics of ZnO nanowire depending on deposition condition (증착조건에 따른 ZnO 나노와이어의 성장 및 photoluminescence 특성)

  • Oh, Won-Seok;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.172-172
    • /
    • 2008
  • By thermal evaporation method, well-aligned ZnO nanowires were synthesized on sapphire substrate at $1000^{\circ}C$ with different oxygen flow rate by using pure ZnO powder (99.999 %). The as-synthesized ZnO nanowires were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The well-aligned nanowires are single crystalline in nature and perpendicularly grown along the c-axis. Also the growth rate of nanowires, such as diameter and length, had a tendency to increase as oxygen flow rate increased. Based on the PL measurement of ZnO nanowires, we found that the near band edge of emission redshifted with the increasing intensity of the defect-related green emission in proportion to the increase of oxygen flow rate. "This research was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)" (The Regional Research Universities Program/Chungbuk BIT Research-Oriented University Consortium).

  • PDF

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Autonomous vision-based damage chronology for spatiotemporal condition assessment of civil infrastructure using unmanned aerial vehicle

  • Mondal, Tarutal Ghosh;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.733-749
    • /
    • 2020
  • This study presents a computer vision-based approach for representing time evolution of structural damages leveraging a database of inspection images. Spatially incoherent but temporally sorted archival images captured by robotic cameras are exploited to represent the damage evolution over a long period of time. An access to a sequence of time-stamped inspection data recording the damage growth dynamics is premised to this end. Identification of a structural defect in the most recent inspection data set triggers an exhaustive search into the images collected during the previous inspections looking for correspondences based on spatial proximity. This is followed by a view synthesis from multiple candidate images resulting in a single reconstruction for each inspection round. Cracks on concrete surface are used as a case study to demonstrate the feasibility of this approach. Once the chronology is established, the damage severity is quantified at various levels of time scale documenting its progression through time. The proposed scheme enables the prediction of damage severity at a future point in time providing a scope for preemptive measures against imminent structural failure. On the whole, it is believed that the present study will immensely benefit the structural inspectors by introducing the time dimension into the autonomous condition assessment pipeline.

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis

  • Lee, Kee Hag;Lee, Jeeyoung;Dieckmann, Rudiger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.629-632
    • /
    • 2013
  • Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.