• Title/Summary/Keyword: deep underground

Search Result 462, Processing Time 0.025 seconds

A Study on Machine Learning-Based Real-Time Automated Measurement Data Analysis Techniques (머신러닝 기반의 실시간 자동화계측 데이터 분석 기법 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.685-690
    • /
    • 2023
  • It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

The main considerations in the design and safety assessment case study for Deep & Large size of Tunnel station (대심도 대단면 터널정거장 설계시 주요고려사항 및 안정성 평가에 대한 사례 연구)

  • Jang, Sun-Jong;Hong, Jong-Wan;Jeon, Ki-Chan;Kim, Young-Min;Paik, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.462-469
    • /
    • 2011
  • The design of high-depth and large-section tunnel facilities has been increased lately. The purpose of the design is to avoid inference of existing facilities, enhance public relations and reducing the size of the station, which is advantageous for effective use of underground spaces. Diverse downtown tunnel experience, advanced excavation equipment, reinforcement methods, monitoring technologies and numerical analysis made the design possible. This paper is to introduce the design of high-depth and large-section tunnel facilities via Gimpo airport area of Deagok-Sosa railway BTL project of double-tracking.

  • PDF

CFD APLICATIONS FOR THE $CO_2$ OCEAN SEQUESTRATION ($CO_2$ 해양격리를 위한 CFD의 응용연구)

  • Jung, R.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.196-201
    • /
    • 2009
  • Global warming issues due to the $CO_2$(Carbon Dioxide) become increasing since the Industrial Revolution. After the Kyoto protocol at 1997, nations which have the prearranged quota drives their national project for the reduction of $CO_2$. Korean Government start to the related big projects in the view of three concepts which have consist of the $CO_2$ exhaust reduction on land, $CO_2$ capture and $CO_2$ storage. Furthermore, the storage method putting into depleted region underground is accepted by the London Convention while the ocean diluted method discharging the liquid $CO_2$ into the deep ocean using the long pipe which is towed by the surface vessel is underway for the research steps which means that there are many potentials for the R&Ds that need for the breakthrough. In this paper, the role and example of the Computational Fluid Dynamics for the feasibility study of the $CO_2$ ocean sequestration is mentioned.

  • PDF

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

Comparison of Displacement of the Braced Retaining Wall by Developed Elasto-Plastic Analysis (개선된 탄소성 해석을 이용한 버팀지지 흙막이벽의 거동비교)

  • Shin, Jin-Whan;Kim, Dong-Shin
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, when being constructed the large structures, the deep excavations have performed to utilize the underground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground is frequently occurred. the Analysis of the retaining structures is necessary to safety of the excavation works. There are many methods such as elasto-plastic theory, FEM, and FDM to analyze the displacement of the retaining structure. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement bye the Inclinometer. The monitored fields were three excavation work site in S-I, S-II, and S-III area. Excavation method of each site is braced retaining wall using H-pile. Excavation depth is 14m, 14m, and 8.2m.

Semi -analytical Solution for Azisymmetric Tunnels in Drucker Prayer Medium (Drucker-Prager 파괴기준을 적용한 축대칭 탄소성 터널의 이론해)

  • 김광진;김학문
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.169-184
    • /
    • 1997
  • A semi -analytical solution is derived to solve the elastic-plastic behavior of the axisymmetric tunnels in Drucker-Prager medium. Based on this analytical solution, a computer program FDAXP. is developed. Parametric studies are carried out to verify the FDAXP program, and the results were found to be satisfactory. This simple solution could be incorporated into the preliminary design, analysis of deep underground tunnel as well as tunnels with unfavourable geotechnical conditions. The program provided a useful means of checking the Drucker-Eraser model and iris associated computational algorithms in other tunnel programs.

  • PDF

Axial compressive behavior of concrete-filled steel tube columns with stiffeners

  • Liang, Wei;Dong, Jiangfeng;Wang, Qingyuan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.

Korean Three Dimensional In-situ stresses and Tunnel Analysis Considering These Stresses (한반도 3차원 지중응력과 이를 고려한 터널해석에 대한 연구)

  • 김동갑;박종관;김수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.97-104
    • /
    • 2001
  • The magnitude and the orientation of in-situ stresses contribute to ground displacement and stresses in the field of underground space. This paper investigates in-situ stresses at various depth on the basis of 392 data which were determined by over-coring and hydro-fracturing test methods in the Korea peninsula. The result shows that in-situ stress distribution are more or less non-uniform through the Granite and Gneiss sub-area, and that the K-value in the Volcanic sub-area are below 1 at the deep depth. Also, the result of three dimensional numerical analyses of tunnel shows that the direction and magnitude of displacement around tunnel are much effected by the stress difference between the maximum and the minimum horizontal stress.

  • PDF

Complex analysis of rock cutting with consideration of rock-tool interaction using distinct element method (DEM)

  • Zhang, Guangzhe;Dang, Wengang;Herbst, Martin;Song, Zhengyang
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.421-432
    • /
    • 2020
  • Cutting of rocks is very common encountered in tunneling and mining during underground excavations. A deep understanding of rock-tool interaction can promote industrial applications significantly. In this paper, a distinct element method based approach, PFC3D, is adopted to simulate the rock cutting under different operation conditions (cutting velocity, depth of cut and rake angle) and with various tool geometries (tip angle, tip wear and tip shape). Simulation results showed that the cutting force and accumulated number of cracks increase with increasing cutting velocity, cut depth, tip angle and pick abrasion. The number of cracks and cutting force decrease with increasing negative rake angle and increase with increasing positive rake angle. The numerical approach can offer a better insight into the rock-tool interaction during the rock cutting process. The proposed numerical method can be used to assess the rock cuttability, to estimate the cutting performance, and to design the cutter head.