DOI QR코드

DOI QR Code

Axial compressive behavior of concrete-filled steel tube columns with stiffeners

  • Liang, Wei (School of Architecture and Environment, Sichuan University) ;
  • Dong, Jiangfeng (School of Architecture and Environment, Sichuan University) ;
  • Wang, Qingyuan (Key Laboratory of Deep Underground Science and Engineering, Ministry of Education, Sichuan University)
  • Received : 2017.11.29
  • Accepted : 2018.09.11
  • Published : 2018.10.25

Abstract

In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abdel-Rahman, N. and Sivakumaran, K.S. (1997), "Material properties models for analysis of cold-formed steel members", J. Struct. Eng, 123(9), 1135-1143. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1135)
  2. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967
  3. Bambach, M.R. (2011), "Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads", Thin Wall. Struct., 49(10), 1251-1260. https://doi.org/10.1016/j.tws.2011.05.009
  4. Carpinteri, A. (2012), Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture, Springer Science & Business Media.
  5. Chang, X., Fu, L., Zhao, H.-B. and Zhang, Y.-B. (2013), "Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes", Thin Wall. Struct., 73, 273-280. https://doi.org/10.1016/j.tws.2013.08.018
  6. Chitawadagi, M.V., Narasimhan, M.C. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns -DOE approach", J. Constr. Steel Res., 66(10), 1248-1260. https://doi.org/10.1016/j.jcsr.2010.04.006
  7. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66(7), 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003
  8. Domone, P.L. (2006), "Self-compacting concrete: An analysis of 11 years of case studies", Cem. Concrete Compos., 28(2), 197-208. https://doi.org/10.1016/j.cemconcomp.2005.10.003
  9. Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin Wall. Struct., 56, 62-70. https://doi.org/10.1016/j.tws.2012.03.008
  10. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58, 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  11. Gettu, R., Bazant, Z.P. and Karr, M.E. (1990), "Fracture properties and brittleness of high-strength concrete", ACI Mater. J., 87(6), 608-618.
  12. Han, L.-H., Yao, G.-H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008
  13. Han, L.-H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016
  14. Huang, C. S., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.-H. (2002), "Axial Load Behavior of Stiffened Concrete-Filled Steel Columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  15. Huang, H., Han, L.-H., Tao, Z. and Zhao, X.-L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66(4), 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014
  16. Lam, D., Dai, X.H., Han, L.H., Ren, Q.X. and Li, W. (2012), "Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load", Thin Wall. Struct., 54, 94-105. https://doi.org/10.1016/j.tws.2012.02.010
  17. Long, Y.-L. and Cai, J. (2013), "Stress-strain relationship of concrete confined by rectangular steel tubes with binding bars", J. Constr. Steel Res., 88, 1-14. https://doi.org/10.1016/j.jcsr.2013.04.006
  18. Nepomuceno, M.C.S., Pereira-de-Oliveira, L.A. and Lopes, S.M.R. (2014), "Methodology for the mix design of selfcompacting concrete using different mineral additions in binary blends of powders", Constr. Build. Mater., 64, 82-94. https://doi.org/10.1016/j.conbuildmat.2014.04.021
  19. Okamura, H. and Ouchi, M. (1998), "Self-compacting high performance concrete", Progress in Structural Engineering and Materials, 1(4), 378-383. https://doi.org/10.1002/pse.2260010406
  20. Petrus, C., Abdul Hamid, H., Ibrahim, A. and Parke, G. (2010), "Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners", J. Constr. Steel Res., 66(7), 915-922. https://doi.org/10.1016/j.jcsr.2010.02.006
  21. Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., Int. J., 17(5), 667-686. https://doi.org/10.12989/scs.2014.17.5.667
  22. Siddique, R. (2013), "Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of selfcompacting concrete containing coal bottom ash", Constr. Build. Mater., 47, 1444-1450. https://doi.org/10.1016/j.conbuildmat.2013.06.081
  23. Su, N., Hsu, K.-C. and Chai, H.-W. (2001), "A simple mix design method for self-compacting concrete", Cem. Concrete Res., 31, 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  24. Tao, Z., Han, L.-H. and Wang, Z.-B. (2005), "Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns", J. Constr. Steel Res., 61(7), 962-983. https://doi.org/10.1016/j.jcsr.2004.12.003
  25. Tao, Z., Han, L.-H. and Wang, D.-Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003
  26. Tao, Z., Uy, B., Han, L.-H. and Wang, Z.-B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006
  27. Tao, Z., Wang, Z.-B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001
  28. Topcu, I.B., Bilir, T. and Uygunoglu, T. (2009), "Effect of waste marble dust content as filler on properties of self-compacting concrete", Constr. Build. Mater., 23(5), 1947-1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007

Cited by

  1. Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.123
  2. D-Shaped Concrete-Filled Steel Tube Structure in Bridge Engineering vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6611003
  3. Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections vol.38, pp.5, 2021, https://doi.org/10.12989/scs.2021.38.5.497
  4. Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression vol.38, pp.6, 2018, https://doi.org/10.12989/scs.2021.38.6.617
  5. Seismic behavior of cross-shaped concrete-filled steel tubular columns vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.405