• Title/Summary/Keyword: deep similarity

Search Result 227, Processing Time 0.021 seconds

Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, Jin Sue
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.763-776
    • /
    • 2021
  • This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

Study on the Reconstruction of Pressure Field in Sloshing Simulation Using Super-Resolution Convolutional Neural Network (심층학습 기반 초해상화 기법을 이용한 슬로싱 압력장 복원에 관한 연구)

  • Kim, Hyo Ju;Yang, Donghun;Park, Jung Yoon;Hwang, Myunggwon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning

  • Chenzhe Jiang;Banglian Xu;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.655-664
    • /
    • 2023
  • Ghost imaging (GI) technology is developing rapidly, but there are inevitably some limitations such as the influence of atmospheric turbulence. In this paper, we study a ghost imaging system in atmospheric turbulence and use a gamma-gamma (GG) model to simulate the medium to strong range of turbulence distribution. With a compressed sensing (CS) algorithm and generative adversarial network (GAN), the image can be restored well. We analyze the performance of correlation imaging, the influence of atmospheric turbulence and the restoration algorithm's effects. The restored image's peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) increased to 21.9 dB and 0.67 dB, respectively. This proves that deep learning (DL) methods can restore a distorted image well, and it has specific significance for computational imaging in noisy and fuzzy environments.

K-Means Clustering with Deep Learning for Fingerprint Class Type Prediction

  • Mukoya, Esther;Rimiru, Richard;Kimwele, Michael;Mashava, Destine
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.29-36
    • /
    • 2022
  • In deep learning classification tasks, most models frequently assume that all labels are available for the training datasets. As such strategies to learn new concepts from unlabeled datasets are scarce. In fingerprint classification tasks, most of the fingerprint datasets are labelled using the subject/individual and fingerprint datasets labelled with finger type classes are scarce. In this paper, authors have developed approaches of classifying fingerprint images using the majorly known fingerprint classes. Our study provides a flexible method to learn new classes of fingerprints. Our classifier model combines both the clustering technique and use of deep learning to cluster and hence label the fingerprint images into appropriate classes. The K means clustering strategy explores the label uncertainty and high-density regions from unlabeled data to be clustered. Using similarity index, five clusters are created. Deep learning is then used to train a model using a publicly known fingerprint dataset with known finger class types. A prediction technique is then employed to predict the classes of the clusters from the trained model. Our proposed model is better and has less computational costs in learning new classes and hence significantly saving on labelling costs of fingerprint images.

Design and Implementation of a Face Authentication System (딥러닝 기반의 얼굴인증 시스템 설계 및 구현)

  • Lee, Seungik
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2020
  • This paper proposes a face authentication system based on deep learning framework. The proposed system is consisted of face region detection and feature extraction using deep learning algorithm, and performed the face authentication using joint-bayesian matrix learning algorithm. The performance of proposed paper is evaluated by various face database , and the face image of one person consists of 2 images. The face authentication algorithm was performed by measuring similarity by applying 2048 dimension characteristic and combined Bayesian algorithm through Deep Neural network and calculating the same error rate that failed face certification. The result of proposed paper shows that the proposed system using deep learning and joint bayesian algorithms showed the equal error rate of 1.2%, and have a good performance compared to previous approach.

Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network

  • Seung-Jin Yoo;Soon Ho Yoon;Jong Hyuk Lee;Ki Hwan Kim;Hyoung In Choi;Sang Joon Park;Jin Mo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.476-488
    • /
    • 2021
  • Objective: We aimed to develop a deep neural network for segmenting lung parenchyma with extensive pathological conditions on non-contrast chest computed tomography (CT) images. Materials and Methods: Thin-section non-contrast chest CT images from 203 patients (115 males, 88 females; age range, 31-89 years) between January 2017 and May 2017 were included in the study, of which 150 cases had extensive lung parenchymal disease involving more than 40% of the parenchymal area. Parenchymal diseases included interstitial lung disease (ILD), emphysema, nontuberculous mycobacterial lung disease, tuberculous destroyed lung, pneumonia, lung cancer, and other diseases. Five experienced radiologists manually drew the margin of the lungs, slice by slice, on CT images. The dataset used to develop the network consisted of 157 cases for training, 20 cases for development, and 26 cases for internal validation. Two-dimensional (2D) U-Net and three-dimensional (3D) U-Net models were used for the task. The network was trained to segment the lung parenchyma as a whole and segment the right and left lung separately. The University Hospitals of Geneva ILD dataset, which contained high-resolution CT images of ILD, was used for external validation. Results: The Dice similarity coefficients for internal validation were 99.6 ± 0.3% (2D U-Net whole lung model), 99.5 ± 0.3% (2D U-Net separate lung model), 99.4 ± 0.5% (3D U-Net whole lung model), and 99.4 ± 0.5% (3D U-Net separate lung model). The Dice similarity coefficients for the external validation dataset were 98.4 ± 1.0% (2D U-Net whole lung model) and 98.4 ± 1.0% (2D U-Net separate lung model). In 31 cases, where the extent of ILD was larger than 75% of the lung parenchymal area, the Dice similarity coefficients were 97.9 ± 1.3% (2D U-Net whole lung model) and 98.0 ± 1.2% (2D U-Net separate lung model). Conclusion: The deep neural network achieved excellent performance in automatically delineating the boundaries of lung parenchyma with extensive pathological conditions on non-contrast chest CT images.

Using similarity based image caption to aid visual question answering (유사도 기반 이미지 캡션을 이용한 시각질의응답 연구)

  • Kang, Joonseo;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.191-204
    • /
    • 2021
  • Visual Question Answering (VQA) and image captioning are tasks that require understanding of the features of images and linguistic features of text. Therefore, co-attention may be the key to both tasks, which can connect image and text. In this paper, we propose a model to achieve high performance for VQA by image caption generated using a pretrained standard transformer model based on MSCOCO dataset. Captions unrelated to the question can rather interfere with answering, so some captions similar to the question were selected to use based on a similarity to the question. In addition, stopwords in the caption could not affect or interfere with answering, so the experiment was conducted after removing stopwords. Experiments were conducted on VQA-v2 data to compare the proposed model with the deep modular co-attention network (MCAN) model, which showed good performance by using co-attention between images and text. As a result, the proposed model outperformed the MCAN model.

An Analysis of Similarities that Students Construct in the Process of Problem Solving (중학생들이 수학 문장제 해결 과정에서 구성하는 유사성 분석)

  • Park Hyun-Jeong;Lee Chong-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.115-138
    • /
    • 2006
  • The purpose of this paper is to investigate students' constructing similarities in the understanding the problem phase and the devising a plan phase of problem solving. the relation between similarities that students construct and how students construct similarities is researched through case study. Based on the results from the research, authors reached a conclusion as following. All of two students constructed surface similarities in the beginning of the problem solving process and responded to the context of the problem information sensitively. Specially student who constructed the similarities and the difference in terms of a specific dimension by using diagram for herself could translate the equation which used to solve the base problem or the experienced problem into the equation of the target problem solution. However student who understood globally the target problem being based on the surface similarity could not translate the equation that she used to solve the base problem into the equation of target problem solution.

  • PDF

Word Embeddings-Based Pseudo Relevance Feedback Using Deep Averaging Networks for Arabic Document Retrieval

  • Farhan, Yasir Hadi;Noah, Shahrul Azman Mohd;Mohd, Masnizah;Atwan, Jaffar
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • Pseudo relevance feedback (PRF) is a powerful query expansion (QE) technique that prepares queries using the top k pseudorelevant documents and choosing expansion elements. Traditional PRF frameworks have robustly handled vocabulary mismatch corresponding to user queries and pertinent documents; nevertheless, expansion elements are chosen, disregarding similarity to the original query's elements. Word embedding (WE) schemes comprise techniques of significant interest concerning QE, that falls within the information retrieval domain. Deep averaging networks (DANs) defines a framework relying on average word presence passed through multiple linear layers. The complete query is understandably represented using the average vector comprising the query terms. The vector may be employed for determining expansion elements pertinent to the entire query. In this study, we suggest a DANs-based technique that augments PRF frameworks by integrating WE similarities to facilitate Arabic information retrieval. The technique is based on the fundamental that the top pseudo-relevant document set is assessed to determine candidate element distribution and select expansion terms appropriately, considering their similarity to the average vector representing the initial query elements. The Word2Vec model is selected for executing the experiments on a standard Arabic TREC 2001/2002 set. The majority of the evaluations indicate that the PRF implementation in the present study offers a significant performance improvement compared to that of the baseline PRF frameworks.