Acknowledgement
본 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. NRF-2019R1A2C1004682)을 받아 수행된 기초연구사업입니다.
References
- Chen, Y.G., Djidjeli, K. & Price, W.G., 2009. Numerical simulation of liquid sloshing phenomena in partially filled con-tainers. Computers & Fluids, 38(4), pp.830-842. https://doi.org/10.1016/j.compfluid.2008.09.003
- Deng, Z., He, C., Liu, Y. & Kim, K. C., 2019. Super- resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework. Physics of Fluids, 31(12), pp.125111. https://doi.org/10.1063/1.5127031
- Dong, C., Loy, C.C., He, K. & Tang, X., 2014. Learning a deep convolutional network for image super-resolution. European conference on computer vision, pp.184-199.
- Fukami, K., Fukagata, K. & Taira, K., 2018. Super- resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870, pp.106-120. https://doi.org/10.1017/jfm.2019.238
- Gupta, R. & Jaiman, R., 2021. Hybrid physics-based deep learning methodology for moving interface and fluid- structure interaction. arXiv preprint arXiv:2102.09095.
- Hui, X., Bai, J., Wang, H. & Zhang, Y., 2020. Fast pressure distribution prediction of airfoils using deep learning. Aerospace Science and Technology, 105, pp.105949. https://doi.org/10.1016/j.ast.2020.105949
- Jung, J. H., Yoon, H. S. & Lee, C. Y., 2015. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. International Journal of Naval Architecture and Ocean Engineering, 7(3), pp.580-594. https://doi.org/10.1515/ijnaoe-2015-0041
- Lee, S. I.,Yang, G. M., Lee, J., Lee, J. H., Jeong, Y. J., Lee, J. G. & Choi, W., 2019. Recognition and visualization of crack on concrete wall using deep learning and transfer learning. Journal of the Korean Society of Agricultural Engineers, 61(3), pp.55-65. https://doi.org/10.5389/KSAE.2019.61.3.055
- Kang, D.H. & Lee, Y.B., 2005. Summary report of sloshing model test for rectangular model. No. 001. South Korea: Daewoo Shipbuilding & Marine Engineering Co., Ltd.
- Kingma, D. P. & Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Park, W. S. & Kim, M., 2016. CNN-based in-loop filtering for coding efficiency improvement. In 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp.1-5.
- Shekar, B.H., & Dagnew, G., 2019. Grid search-based hyperparameter tuning and classification of microarray cancer data. Second International Conference on Advanced Computational and Communication Paradigms, pp.1-8.
- Xu, X., Sun, D., Pan, J., Zhang, Y., Pfister, H. & Yang, M. H., 2017. Learning to super-resolve blurry face and text images. In Proceedings of the IEEE international conference on computer vision, pp.251-260.