Acknowledgement
National Natural Science Foundation of China (No. 62275153, 62005165); Shanghai Industrial Collaborative Innovation Project (HCXBCY-2022-006); projects sponsored by the development fund for Shanghai talents (No: 2021005).
References
- F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Erratum: Differential ghost imaging [Phys. Rev. Lett. 104, 253603 (2010)]," Phy. Rev. Lett. 105, 219902 (2010).
- G. Barbastathis, A. Ozcan, and G. Situ, "On the use of deep learning for computational imaging," Optica 6, 921-943 (2019). https://doi.org/10.1364/OPTICA.6.000921
- B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, "Holographic ghost imaging and the violation of a bell inequality," Phy. Rev. Lett. 103, 083602 (2009).
- R. J. Glauber, "Quantum optics and heavy ion physics," Nucl. Phys. A 774, 3-13 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.009
- H. Wang, "Compressed sensing: Theory and applications," J. Phys.: Conf. Ser. 2419, 012042 (2023).
- O. Katz, Y. Bromberg, and Y. R. Silberberg, "Compressive ghost imaging," Appl. Phy. Lett. 95, 131110 (2009).
- Y. Sun, J. Shi, L. Sun, J. Fan, and G. Zeng, "Image reconstruction through dynamic scattering media based on deep learning," Opt. Express 27, 16032-16046 (2019). https://doi.org/10.1364/OE.27.016032
- A. Jahid, M. H. Alsharif, and T. J. Hall, "A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction," J. Netw. Comput. Appl. 200, 103311 (2022).
- Y. Zhang and Y. Wang, "Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere," Optik 123, 1360-1363 (2012). https://doi.org/10.1016/j.ijleo.2011.07.072
- J. Cheng and J. Lin, "Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere," Phys. Rev. A 87, 043810 (2013).
- Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, "Lensless ghost imaging through the strongly scattering medium," Chin. Phys. B 25, 024202 (2016).
- L. Tang, Y. Bai, C. Duan, S. Nan, Q. Shen, and X. Fu, "Effects of incident angles on reflective ghost imaging through atmospheric turbulence," Laser Phys. 28, 015201 (2018).
- D. Shi, C. Fan, P. Zhang, J. Zhang, H. Shen, C. Qiao, and Y. Wang, "Adaptive optical ghost imaging through atmospheric turbulence," Opt. Express 20, 27992-27998 (2012). https://doi.org/10.1364/OE.20.027992
- Z. Xiaoming and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Wirel. Commun. 50, 1293-1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
- T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-R3432 (1995). https://doi.org/10.1103/PhysRevA.52.R3429
- J. H. Shapiro and R. W. Boyd, "The physics of ghost imaging," Quantum Inf. Process. 11, 949-993 (2012). https://doi.org/10.1007/s11128-011-0356-5
- F. Willomitzer, S. Ettl, C. Faber, and G. Hausler, "Single-shot three-dimensional sensing with improved data density," Appl. Opt. 54, 408-417 (2015). https://doi.org/10.1364/AO.54.000408
- N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, "Learning to see through multimode fibers," Optica 5, 960-966 (2018). https://doi.org/10.1364/OPTICA.5.000960
- J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw. 61, 85-117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature 521, 436-444 (2015). https://doi.org/10.1038/nature14539
- Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Phys. Rev. E 71, 056607 (2005).
- M. Zafari, R. kheradmand, and S. Ahmadi-Kandjani, "Optical encryption with selective computational ghost imaging," J. Opt. 16, 105405 (2014).
- I. Baris and J. Shapiro, "Ghost imaging: From quantum to classical to computational," Adv. Opt. Photonics 2, 405-450 (2010). https://doi.org/10.1364/AOP.2.000405
- Y. Bromberg, O. Katz, and Y. Silberberg, "Ghost imaging with a single detector," Phys. Rev. A 79, 053840 (2009).
- V. Katkovnik and J. Astola, "Compressive sensing computational ghost imaging," J. Opt. Soc. Am. A 29, 1556-1567 (2012). https://doi.org/10.1364/JOSAA.29.001556
- H. Kaushal and G. Kaddoum, "Free space optical communication: challenges and mitigation techniques," arXiv:1506.04836 (2015).
- K. Wang, Z. Wang, C. Bai, L. Zhang, B. Dai, Y. Zhang, H. Ye, Z. Zhang, X. Han, T. Xue, M. Xu, J. Hu, X. Xin, and D. Zhang, "Influence of atmospheric turbulence channel on a super-resolution ghost imaging transmission system based on plasmonic structure illumination microscopy," Front. Phys. 8, 546528 (2020).
- A. A. Farid and S. Hranilovic, "Outage capacity for MISO intensity-modulated free-space optical links with misalignment," J. Opt. Commun. Netw. 3, 780-789 (2011). https://doi.org/10.1364/JOCN.3.000780
- J. I. Davis, "Consideration of atmospheric turbulence in laser systems design," Appl. Opt. 5, 139-147 (1966). https://doi.org/10.1364/AO.5.000139
- J. P. Dumas, M. A. Lodhi, W. U. Bajwa, and M. C. Pierce, "Computational imaging with spectral coding increases the spatial resolution of fiber optic bundles," Opt. Lett. 48, 1088-1091 (2023). https://doi.org/10.1364/OL.477579
- W.-Z. Shao, Y.-Y. Liu, L.-Y. Ye, L.-Q. Wang, Q. Ge, B.-K. Bao, and H.-B. Li, "DeblurGAN+: Revisiting blind motion deblurring using conditional adversarial networks," Signal Process. 168, 107338 (2020).
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks," Commun. ACM 63, 139-144 (2020). https://doi.org/10.1145/3422622
- A. M. Samin, M. H. Kobir, S. Kibria, and M. S. Rahman, "Deep learning based large vocabulary continuous speech recognition of an under-resourced language Bangladeshi Bangla," Acoust. Sci. Technol. 42, 252-260 (2021). https://doi.org/10.1250/ast.42.252
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv 1409.1556v6 (2015).
- R. Al-Rfou et al. "Theano: A Python framework for fast computation of mathematical expressions," arXiv:1605.02688v1 (2016).
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980v6 (2014).
- K. Zhang, C. Gao, L. Guo, M. Sun, X. Yuan, T. X. Han, Z. Zhao, and B. Li, "Age group and gender estimation in the wild with deep RoR architecture," IEEE Access 5, 22492-22503 (2017). https://doi.org/10.1109/ACCESS.2017.2761849
- C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell. 38, 295-307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281