DOI QR코드

DOI QR Code

Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning

  • Chenzhe Jiang (College of Communication and Art Design, University of Shanghai for Science and Technology) ;
  • Banglian Xu (College of Communication and Art Design, University of Shanghai for Science and Technology) ;
  • Leihong Zhang (School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology) ;
  • Dawei Zhang (School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology)
  • Received : 2023.08.04
  • Accepted : 2023.10.08
  • Published : 2023.12.25

Abstract

Ghost imaging (GI) technology is developing rapidly, but there are inevitably some limitations such as the influence of atmospheric turbulence. In this paper, we study a ghost imaging system in atmospheric turbulence and use a gamma-gamma (GG) model to simulate the medium to strong range of turbulence distribution. With a compressed sensing (CS) algorithm and generative adversarial network (GAN), the image can be restored well. We analyze the performance of correlation imaging, the influence of atmospheric turbulence and the restoration algorithm's effects. The restored image's peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) increased to 21.9 dB and 0.67 dB, respectively. This proves that deep learning (DL) methods can restore a distorted image well, and it has specific significance for computational imaging in noisy and fuzzy environments.

Keywords

Acknowledgement

National Natural Science Foundation of China (No. 62275153, 62005165); Shanghai Industrial Collaborative Innovation Project (HCXBCY-2022-006); projects sponsored by the development fund for Shanghai talents (No: 2021005).

References

  1. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Erratum: Differential ghost imaging [Phys. Rev. Lett. 104, 253603 (2010)]," Phy. Rev. Lett. 105, 219902 (2010).
  2. G. Barbastathis, A. Ozcan, and G. Situ, "On the use of deep learning for computational imaging," Optica 6, 921-943 (2019). https://doi.org/10.1364/OPTICA.6.000921
  3. B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, "Holographic ghost imaging and the violation of a bell inequality," Phy. Rev. Lett. 103, 083602 (2009).
  4. R. J. Glauber, "Quantum optics and heavy ion physics," Nucl. Phys. A 774, 3-13 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.009
  5. H. Wang, "Compressed sensing: Theory and applications," J. Phys.: Conf. Ser. 2419, 012042 (2023).
  6. O. Katz, Y. Bromberg, and Y. R. Silberberg, "Compressive ghost imaging," Appl. Phy. Lett. 95, 131110 (2009).
  7. Y. Sun, J. Shi, L. Sun, J. Fan, and G. Zeng, "Image reconstruction through dynamic scattering media based on deep learning," Opt. Express 27, 16032-16046 (2019). https://doi.org/10.1364/OE.27.016032
  8. A. Jahid, M. H. Alsharif, and T. J. Hall, "A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction," J. Netw. Comput. Appl. 200, 103311 (2022).
  9. Y. Zhang and Y. Wang, "Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere," Optik 123, 1360-1363 (2012). https://doi.org/10.1016/j.ijleo.2011.07.072
  10. J. Cheng and J. Lin, "Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere," Phys. Rev. A 87, 043810 (2013).
  11. Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, "Lensless ghost imaging through the strongly scattering medium," Chin. Phys. B 25, 024202 (2016).
  12. L. Tang, Y. Bai, C. Duan, S. Nan, Q. Shen, and X. Fu, "Effects of incident angles on reflective ghost imaging through atmospheric turbulence," Laser Phys. 28, 015201 (2018).
  13. D. Shi, C. Fan, P. Zhang, J. Zhang, H. Shen, C. Qiao, and Y. Wang, "Adaptive optical ghost imaging through atmospheric turbulence," Opt. Express 20, 27992-27998 (2012). https://doi.org/10.1364/OE.20.027992
  14. Z. Xiaoming and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Wirel. Commun. 50, 1293-1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
  15. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-R3432 (1995). https://doi.org/10.1103/PhysRevA.52.R3429
  16. J. H. Shapiro and R. W. Boyd, "The physics of ghost imaging," Quantum Inf. Process. 11, 949-993 (2012). https://doi.org/10.1007/s11128-011-0356-5
  17. F. Willomitzer, S. Ettl, C. Faber, and G. Hausler, "Single-shot three-dimensional sensing with improved data density," Appl. Opt. 54, 408-417 (2015). https://doi.org/10.1364/AO.54.000408
  18. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, "Learning to see through multimode fibers," Optica 5, 960-966 (2018). https://doi.org/10.1364/OPTICA.5.000960
  19. J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw. 61, 85-117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003
  20. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature 521, 436-444 (2015). https://doi.org/10.1038/nature14539
  21. Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Phys. Rev. E 71, 056607 (2005).
  22. M. Zafari, R. kheradmand, and S. Ahmadi-Kandjani, "Optical encryption with selective computational ghost imaging," J. Opt. 16, 105405 (2014).
  23. I. Baris and J. Shapiro, "Ghost imaging: From quantum to classical to computational," Adv. Opt. Photonics 2, 405-450 (2010). https://doi.org/10.1364/AOP.2.000405
  24. Y. Bromberg, O. Katz, and Y. Silberberg, "Ghost imaging with a single detector," Phys. Rev. A 79, 053840 (2009).
  25. V. Katkovnik and J. Astola, "Compressive sensing computational ghost imaging," J. Opt. Soc. Am. A 29, 1556-1567 (2012). https://doi.org/10.1364/JOSAA.29.001556
  26. H. Kaushal and G. Kaddoum, "Free space optical communication: challenges and mitigation techniques," arXiv:1506.04836 (2015).
  27. K. Wang, Z. Wang, C. Bai, L. Zhang, B. Dai, Y. Zhang, H. Ye, Z. Zhang, X. Han, T. Xue, M. Xu, J. Hu, X. Xin, and D. Zhang, "Influence of atmospheric turbulence channel on a super-resolution ghost imaging transmission system based on plasmonic structure illumination microscopy," Front. Phys. 8, 546528 (2020).
  28. A. A. Farid and S. Hranilovic, "Outage capacity for MISO intensity-modulated free-space optical links with misalignment," J. Opt. Commun. Netw. 3, 780-789 (2011). https://doi.org/10.1364/JOCN.3.000780
  29. J. I. Davis, "Consideration of atmospheric turbulence in laser systems design," Appl. Opt. 5, 139-147 (1966). https://doi.org/10.1364/AO.5.000139
  30. J. P. Dumas, M. A. Lodhi, W. U. Bajwa, and M. C. Pierce, "Computational imaging with spectral coding increases the spatial resolution of fiber optic bundles," Opt. Lett. 48, 1088-1091 (2023). https://doi.org/10.1364/OL.477579
  31. W.-Z. Shao, Y.-Y. Liu, L.-Y. Ye, L.-Q. Wang, Q. Ge, B.-K. Bao, and H.-B. Li, "DeblurGAN+: Revisiting blind motion deblurring using conditional adversarial networks," Signal Process. 168, 107338 (2020).
  32. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks," Commun. ACM 63, 139-144 (2020). https://doi.org/10.1145/3422622
  33. A. M. Samin, M. H. Kobir, S. Kibria, and M. S. Rahman, "Deep learning based large vocabulary continuous speech recognition of an under-resourced language Bangladeshi Bangla," Acoust. Sci. Technol. 42, 252-260 (2021). https://doi.org/10.1250/ast.42.252
  34. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv 1409.1556v6 (2015).
  35. R. Al-Rfou et al. "Theano: A Python framework for fast computation of mathematical expressions," arXiv:1605.02688v1 (2016).
  36. D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980v6 (2014).
  37. K. Zhang, C. Gao, L. Guo, M. Sun, X. Yuan, T. X. Han, Z. Zhao, and B. Li, "Age group and gender estimation in the wild with deep RoR architecture," IEEE Access 5, 22492-22503 (2017). https://doi.org/10.1109/ACCESS.2017.2761849
  38. C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell. 38, 295-307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281