DOI QR코드

DOI QR Code

Holographic Recording Versus Holographic Lithography

  • Seungwoo Lee (Department of Integrated Energy Engineering, College of Engineering, Korea University)
  • Received : 2023.10.18
  • Accepted : 2023.11.27
  • Published : 2023.12.25

Abstract

Holography is generally known as a technology that records and reconstructs 3D images by simultaneously capturing the intensity and phase information of light. Two or more interfering beams and illumination of this interference pattern onto a photosensitive recording medium allow us to control both the intensity and phase of light. Holography has found widespread applications not only in 3D imaging but also in manufacturing. In fact, it has been commonly used in semiconductor manufacturing, where interference light patterns are applied to photolithography, effectively reducing the half-pitch and period of line patterns, and enhancing the resolution of lithography. Moreover, holography can be used for the manufacturing of 3D regular structures (3D photonic crystals), not just surface patterns such as 1D or 2D gratings, and this can be broadly divided into (i) holographic recording and (ii) holographic lithography. In this review, we conceptually contrast two seemingly similar but fundamentally different manufacturing methods: holographic recording and holographic lithography. We comprehensively describe the differences in the manufacturing processes and the resulting structural features, as well as elucidate the distinctions in the diffractive optical properties that can be derived from them. Lastly, we aim to summarize the unique perspectives through which each method can appear distinct, with the intention of sharing information about this field with both experts and non-experts alike.

Keywords

Acknowledgement

National Research Foundation (NRF) of Korea grant (NRF-2022M3H4A1A02074314 and NRF-RS-2023-00272363); Samsung Research Funding & Incubation Center for Future Technology grant (SRFC-MA2301-02); The KIST Institutional Program (Project No.: 2V09840-23-P023); Korea University grant.

References

  1. G. Lippmann, "Sur la theorie de la photographie des couleurs simples et composees par la methode interferentielle," J. Phys. Theor. Appl. 3, 97-107 (1894). https://doi.org/10.1051/jphystap:01894003009700
  2. G. Baechler, A. Latty, M. Pacholska, M. Vetterli, and A. Scholefield, "Shedding light on 19th century spectra by analyzing Lippmann photography," Proc. Natl. Acad. Sci. USA 118, e2008819118 (2021).
  3. D. Gabor, "A new microscopi prinnciple," Nature 161, 777-778 (1948). https://doi.org/10.1038/161777a0
  4. D. Gabor, "Microscopy by reconstructed wave-fronts," Proc. R. Soc. Lond. A 197, 454-487 (1949). https://doi.org/10.1098/rspa.1949.0075
  5. Y. N. Denisyuk, "Photographic reconstruction of the optical properties of an object in its own scattered radiation field," Sov. Phys. Dokl. Engl. Transl. 7, 543 (1962).
  6. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, USA, 2000).
  7. D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995). https://doi.org/10.1038/scientificamerican1195-70
  8. K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998). https://doi.org/10.1038/31429
  9. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, "Observation of the photorefractive effect in a polymer," Phys. Rev. Lett. 66, 1846 (1991).
  10. M. L. Schilling, V. L. Colvin, D. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysoski, A. Hale, L. L. Blyler, and C. Boyd, "Acrylate oligomer-based photopolymers for optical storage applications," Chem. Mater. 11, 247-254 (1999). https://doi.org/10.1021/cm980393p
  11. T. J. Trentler, J. E. Boyd, and V. L. Colvin, "Epoxy resin-Photopolymer composites for volume holography," Chem. Mater. 12, 1431-1438 (2000). https://doi.org/10.1021/cm9908062
  12. N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002). https://doi.org/10.1063/1.1525391
  13. C. Sanchez, M. J. Escuti, C. Van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 Nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005). https://doi.org/10.1002/adfm.200500095
  14. F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic Sol-Gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006). https://doi.org/10.1002/adma.200502675
  15. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, "Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording," Opt. Express 14, 12712-12719 (2006). https://doi.org/10.1364/OE.14.012712
  16. A. Khan, G. D. Stucky, and C. J. Hawker, "High-performance, nondiffusive crosslinked polymers for holographic data storage," Adv. Mater. 20, 3937-3941 (2008). https://doi.org/10.1002/adma.200800776
  17. S. Lee, Y.-C. Jeong, and J.-K. Park, "Multifunctional photo-reactive inorganic cages for three-dimensional holographic data storage," Opt. Lett. 34, 3095-3097 (2009). https://doi.org/10.1364/OL.34.003095
  18. S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, "Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage," J. Mater. Chem. 19, 1105-1114 (2009). https://doi.org/10.1039/b815743j
  19. K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, "Low-distortion holographic data storage media using free-radical ring-opening polymerization," Adv. Mater. 19, 3560-3566 (2009).
  20. Y.-C. Jeong, Y. Heo, J. Lee, S. Lee, D. Ahn, and J.-K. Park, "Improved shelf-life stability of holographic photopolymer containing monomer stabilizer," Opt. Mater. 35, 547-552 (2012).
  21. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<187::AID-ADMA187>3.0.CO;2-O
  22. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials," Adv. Mater. 15, 241-244 (2003). https://doi.org/10.1002/adma.200390056
  23. K. M. Lee, V. P. Tondiglia, N. P. Godman, T. J. White, T. J. Bunning, and M. E. McConney, "Reconfigurable reflective colors in holographically patterned liquid crystal gels," ACS Photonics 7, 1978-1982 (2020). https://doi.org/10.1021/acsphotonics.0c00832
  24. A. Saishoji, D. Sato, A. Shishido, and T. Ikeda, "Formation of Bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers," Langmuir 23, 320-326 (2007). https://doi.org/10.1021/la061506j
  25. M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, "Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties," Langmuir 23, 332-338 (2007). https://doi.org/10.1021/la061587j
  26. K. Kim, Y. Lim, H. Son, S. J. Hong, C.-W. Shin, D. Baek, H. H. Kim, N. Kim, J. Bang, and S. Lee, "Optical Fourier volumes: A revisiting of holographic photopolymers and photo-addressable polymers," Adv. Opt. Mater. 10, 2201421 (2022).
  27. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). https://doi.org/10.1063/1.365849
  28. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, "Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist," J. Vac. Sci. Technol. B 17, 3182-3185 (1999). https://doi.org/10.1116/1.590976
  29. M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography: For Photonics, Phononics, and Mechanics (John Wiley & Sons, USA, 2009).
  30. C. Lu and R. H. Lipson, "Interference lithography: A powerful tool for fabricating periodic structures," Laser Photonics Rev. 4, 568-580 (2010). https://doi.org/10.1002/lpor.200810061
  31. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
  32. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
  33. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004). https://doi.org/10.1038/nmat1097
  34. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007). https://doi.org/10.1038/nphoton.2007.141
  35. J. Y. Lee, S. Lee, J.-K. Park, Y. Jun, Y.-G. Lee, K. M. Kim, J. H. Yun, and K. Y. Cho, "Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror," Opt. Express 18, A522-A527 (2010). https://doi.org/10.1364/OE.18.00A522
  36. J. Ge and Y. Yin, "Responsive photonic crystals," Angew. Chem. Int. Ed. 50, 1492-1522 (2011). https://doi.org/10.1002/anie.200907091
  37. G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, "Bottom-up assembly of photonic crystals," Chem. Soc. Rev. 42, 2528-2554 (2013). https://doi.org/10.1039/C2CS35309A
  38. S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljacic, "Experimental observation of large chern numbers in photonic crystals," Phys. Rev. Lett. 115, 253901 (2015).
  39. J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, "Valley photonic crystals for control of spin and topology," Nat. Mater. 16, 298-302 (2017). https://doi.org/10.1038/nmat4807
  40. M. Kolle and S. Lee, "Progress and opportunities in soft photonics and biologically inspired optics," Adv. Mater. 30, 1702669 (2018).
  41. J. H. Lee, G. H. Choi, K. J. Park, D. Kim, J. Park, S. Lee, H. Yi, and P. J. Yoo, "Dual-colour generation from layered colloidal photonic crystals harnessing "core hatching" in double emulsions," J. Mater. Chem. C 7, 6924-6931 (2019). https://doi.org/10.1039/C9TC01055F
  42. J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang, and Z. Tang, "Biomimetic chiral photonic crystals," Angew. Chem. Int. Ed. 58, 7783-7787 (2019). https://doi.org/10.1002/anie.201903264
  43. H. Park and S. Lee, "Double gyroids for frequency-isolated weyl points in the visible regime and interference lithographic design," ACS Photonics 7, 1577-1585 (2020). https://doi.org/10.1021/acsphotonics.0c00532
  44. H. Park, S. S. Oh, and S. Lee, "Surface potential-driven surface states in 3D topological photonic crystals," arXiv:2302.09154 (2023).
  45. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). https://doi.org/10.1038/35003523
  46. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007). https://doi.org/10.1002/adfm.200700140
  47. J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17, 83-93 (2006). https://doi.org/10.1002/pat.663
  48. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). https://doi.org/10.1063/1.1765734
  49. Y. Lim, H. Park, B. Kang, K. Kim, D. Yang, and S. Lee, "Holography, Fourier optics, and beyond photonic crystals: Holographic fabrications for Weyl points, bound states in the continuum, and exceptional points," Adv. Photonics Res. 2, 2100061 (2021).
  50. I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, "Large-area 3D nanostructures with octagonal quasicrystal-line symmetry via phase-mask lithography," Adv. Mater. 19, 1403-1407 (2007). https://doi.org/10.1002/adma.200700178
  51. H. S. Kang, S. Lee, and J.-K. Park, "Monolithic, hierarchical surface reliefs by holographic photofluidization of azopolymer arrays: Direct visualization of polymeric flows," Adv. Funct. Mater. 21, 4412-4422 (2011). https://doi.org/10.1002/adfm.201101203
  52. Y. Lim, B. Kang, S. J. Hong, H. Son, E. Im, J. Bang, and S. Lee, "A field guide to azopolymeric optical fourier surfaces and augmented reality," Adv. Funct. Mater. 31, 2104105 (2021).
  53. F. Gallego-Gomez, F. del Monte, and K. Meerholz, "Optical gain by a simple photoisomerization process," Nat. Mater. 7, 490-497 (2008). https://doi.org/10.1038/nmat2186
  54. S. Lee, H. S. Kang, and J.-K. Park, "Directional photofluidization lithography: Micro/nanostructural evolution by photofluidic motions of azobenzene materials," Adv. Mater. 24, 2069-2103 (2012). https://doi.org/10.1002/adma.201104826
  55. B. Yadav, J. Domurath, K. Kim, S. Lee, and M. Saphiannikova, "Orientation approach to directional photodeformations in glassy side-chain azopolymers," J. Phys. Chem. B 15, 3337-3347 (2019).
  56. Y. Montelongo, A. K. Yetisen, H. Butt, and S.-H. Yun, "Reconfigurable optical assembly of nanostructures," Nat. Commun. 7, 12002 (2015).
  57. D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, "Shrinkage precompensation of holographic three-dimensional photonic-crystal templates," Adv. Mater. 18, 2964-2968 (2006). https://doi.org/10.1002/adma.200600412
  58. Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, "Chiral microstructures (spirals) fabrication by holographic lithography," Opt. Express 13, 7615-7620 (2005). https://doi.org/10.1364/OPEX.13.007615
  59. X. Zhu, Y. Xu, and S. Yang, "Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration," Opt. Express 15, 16546-16560 (2007). https://doi.org/10.1364/OE.15.016546
  60. M. Kagias, S. Lee, A. C. Friedman, T. Zheng, D. Veysset, A. Faraon, and J. R. Greer, "Metasurface-enabled holographic lithography for impact-absorbing nanoarchitected sheets," Adv. Mater. 35, 2209153 (2023).
  61. J. H. Moon, J. S. Seo, Y. Xu, and S. Yang, "Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS)," J. Mater. Chem. 19, 4687-4691 (2009). https://doi.org/10.1039/b901226e
  62. S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, "Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition," Adv. Mater. 23, 2749-2752 (2011). https://doi.org/10.1002/adma.201004547
  63. R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, "The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography," Adv. Mater. 21, 1593-1601 (2011).
  64. S.-H. Nam, J. Park, and S. Jeon, "Rapid and large-scale fabrication of full color woodpile photonic crystals via interference from a conformal multilevel phase mask," Adv. Funct. Mater. 29, 1904971 (2019).
  65. D. Yu, H. Liu, Y. Jiang, and X. Sun, "Holographic storage stability in PQ-PMMA bulk photopolymer," Opt. Commun. 283, 4219-4223 (2010). https://doi.org/10.1016/j.optcom.2010.06.026
  66. P. Cheben, F. de Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A photorefractive organically modified silica glass with high optical gain," Nature 408, 64-67 (2000). https://doi.org/10.1038/35040513
  67. P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492 (2001). https://doi.org/10.1063/1.1354665
  68. S. Lee, Y.-C. Jeong, and J.-K. Park, "Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates," Opt. Express 15, 14550-14559 (2007). https://doi.org/10.1364/OE.15.014550
  69. S. Lee, Y.-C. Jeong, and J.-K. Park, "Unusual surface reliefs from photoinduced creeping and aggregation behavior of azopolymer," Appl. Phys. Lett. 93, 031912 (2008).
  70. S. Lee, J. Shin, H. S. Kang, Y.-H. Lee, and J.-K. Park, "Deterministic nanotexturing by directional photofluidization lithography," Adv. Mater. 23, 3244-3250 (2011). https://doi.org/10.1002/adma.201100662
  71. H. S. Kang, S. Lee, S.-A. Lee, and J.-K. Park, "Multi-level micro/nanotexturing by three-dimensionally controlled photofluidization and its use in plasmonic applications," Adv. Mater. 25, 5490-5497 (2013). https://doi.org/10.1002/adma.201301715
  72. S. J. Yeo, K. J. Park, K. Guo, P. J. Yoo, and S. Lee, "Microfluidic generation of monodisperse and photoreconfigurable microspheres for floral iridescence-inspired structural colorization," Adv. Mater. 28, 5268-5275 (2016). https://doi.org/10.1002/adma.201600425
  73. K. J. Park, J. H. Park, J.-H. Huh, C. H. Kim, D. H. Ho, G. H. Choi, P. J. Yoo, S. M. Cho, J. H. Cho, and S. Lee, "Petal-Inspired diffractive grating on a wavy surface: Deterministic fabrications and applications to colorizations and LED devices," ACS Appl. Mater. Interface 9, 9935-9944 (2017). https://doi.org/10.1021/acsami.6b15536
  74. J. H. Park, K. J. Park, T. Jiang, Q. Sun, J.-H. Huh, Z. L. Wang, S. Lee, and J. H. Cho, "Light-transformable and -healable triboelectric nanogenerators," Nano Energy 38, 412-418 (2017). https://doi.org/10.1016/j.nanoen.2017.05.062
  75. M. Salvatore, F. Borbone, and S. L. Oscurato, "Deterministic realization of quasicrystal surface relief gratings on thin azopolymer films," Adv. Mater. Interfaces 7, 1902118 (2020).
  76. N. Lassaline, R. Brechbuhler, S. J. W. Vonk, K. Ridderbeek, M. Spieser, S. Bisig, B. le Feber, F. T. Rabouw, and D. J. Norris, "Optical Fourier surfaces," Nature 582, 506-510 (2020). https://doi.org/10.1038/s41586-020-2390-x
  77. S. L. Oscurato, F. Reda, M. Salvatore, F. Borbone, P. Maddalena, and A. Ambrosio, "Large-scale multiplexed azopolymer gratings with engineered diffraction behavior," Adv. Mater. Interfaces 8, 2101375 (2021).
  78. Y. Lim, B. Kang, and S. Lee, "Photo-transformable gratings for augmented reality," Adv. Funct. Mater. 31, 2100839 (2021).
  79. S. L. Oscurato, F. Reda, M. Salvatore, F. Borbone, P. Maddalena, and A. Ambrosio, "Shapeshifting diffractive optical devices," Laser Photonics Rev. 16, 2100514 (2022).
  80. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x
  81. M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystals," Nat. Mater. 3, 593-600 (2004). https://doi.org/10.1038/nmat1201
  82. S. H. Park, H. Park, K. Hur, and S. Lee, "Design of DNA origami diamond photonic crystals," ACS Appl. Bio Mater. 3, 747-756 (2020). https://doi.org/10.1021/acsabm.9b01171
  83. M. He, J. P. Gales, E. Ducrot, Z. Gong, G.-R. Yi, S. Sacanna, and D. J. Pine, "Colloidal diamond," Nature 585, 524-529 (2020). https://doi.org/10.1038/s41586-020-2718-6
  84. B. H. Miller, H. Liu, and M. Kolle, "Scalable optical manufacture of dynamic structural colour in stretchable materials," Nat. Mater. 21, 1014-1018 (2022). https://doi.org/10.1038/s41563-022-01318-x
  85. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, "A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer," Appl. Phys. Lett. 92, 031109 (2008).
  86. H. H. Kim, E. Im, and S. Lee, "Colloidal photonic assemblies for colorful radiative cooling," Langmuir 36, 6589-6596 (2020). https://doi.org/10.1021/acs.langmuir.0c00051
  87. Y.D. Cho, J.-H. Huh, K. Kim, and S. Lee, "Scalable, highly uniform, and robust colloidal Mie resonators for all-dielectric soft meta-optics," Adv. Opt. Mater. 7, 1801167 (2019).
  88. S. Jo, H. Park, T. Jun, K. Kim, H. Jung, S. Park, B. Lee, S. Lee, and D. Y. Ryu, "Symmetry-breaking in double gyroid block copolymer films by non-affine distortion," Appl. Mater. Today 23, 101006 (2021).
  89. H. Park, S. Jo, B. Kang, K. Hur, S. S. Oh, D. Y. Ryu, and S. Lee, "Block copolymer gyroids for nanophotonics: Significance of lattice transformation," Nanophotonics, 11, 2583 (2022).
  90. J. Marin-Saez, J. Atencia, D. Chemisana, and M.-V. Collados, "Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications," Opt. Express 24, A720-A730 (2016). https://doi.org/10.1364/OE.24.00A720
  91. Y.-C. Jeong, S. Lee, and J.-K. Park, "Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers," Opt. Express 15, 1497-1504 (2007). https://doi.org/10.1364/OE.15.001497
  92. H. S. Kang, H.-T. Kim, J.-K. Park, and S. Lee, "Light-powered healing of a wearable electrical conductor," Adv. Funct. Mater. 24, 7273-7283 (2014). https://doi.org/10.1002/adfm.201401666
  93. S. Lee, H. S. Kang, A. Ambrosio, J.-K. Park, and L. Marrucci, "Directional superficial photofluidization for deterministic shaping of complex 3D architectures," ACS Appl. Mater. Interface 7, 8209-8217 (2015). https://doi.org/10.1021/acsami.5b01108
  94. H. S. Kang, S. Lee, J. Choi, H. Lee, J.-K. Park, and H.-T. Kim, "Light-induced surface patterning of silica," ACS Nano 9, 9837-9848 (2015). https://doi.org/10.1021/acsnano.5b03946
  95. M. Kim, J.-H. Huh, J. Lee, H. J. Woo, K. Kim, D.-W. Jung, G.-R. Yi, M. S. Jeong, S. Lee, and Y. J. Song, "Photofluidic near-field mapping of electric-field resonance in plasmonic metasurface assembled with gold nanoparticles," J. Phys. Chem. Lett. 8, 3745-3751 (2017). https://doi.org/10.1021/acs.jpclett.7b01307
  96. Y. J. Jeong, K. J. Park, K. Kim, S. Lee, and P. J. Yoo, "Uniaxial alignment of ZnO nanowires via light-induced directional migration of azopolymeric microspheres," Polymer 138, 180-187 (2018). https://doi.org/10.1016/j.polymer.2018.01.068
  97. S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, "Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes," Nano Lett. 10, 296-304 (2010). https://doi.org/10.1021/nl903570c
  98. S. Lee, J. Shin, Y.-H. Lee, and J.-K. Park, "Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography," ACS Nano 4, 7175-7184 (2010). https://doi.org/10.1021/nn1017507
  99. S. Lee, H. S. Kang, and J.-K. Park, "High-resolution patterning of various large-area, highly ordered structural motifs by directional photofluidization lithography: Sub-30-nm line, ellipsoid, rectangle, and circle arrays," Adv. Funct. Mater. 21, 1770-1778 (2011). https://doi.org/10.1002/adfm.201001927
  100. S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, "Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography," Adv. Mater. 26, 7521-7528 (2014). https://doi.org/10.1002/adma.201403098
  101. H. Ning, J. H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J. A. Rogers, W. P. King, and P. V. Braun, "Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries," Proc. Natl. Acad. Sci. USA 112, 6573-6578 (2015). https://doi.org/10.1073/pnas.1423889112
  102. C. Kim, J. Sul, and J. H. Moon, "Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices," Energy Storage Mater. 57, 308-315 (2023). https://doi.org/10.1016/j.ensm.2023.02.026
  103. G. Hyun, J. T. Song, C. Ahn, Y. Ham, D. Cho, J. Oh, and S. Jeon, "Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction," Proc. Natl. Acad. Sci. USA 117, 5680-5685 (2020). https://doi.org/10.1073/pnas.1918837117
  104. M. Maldovan, "Sound and heat revolutions in phononics," Nature 503, 209-217 (2013). https://doi.org/10.1038/nature12608
  105. S. H. Park, H. Park, J.-M. Nam, Y. Ke, T. Liedl, Y. Tian, and S. Lee, "DNA origami-designed 3D phononic crystals," Nanophotonics 12, 2611-2615 (2023). https://doi.org/10.1515/nanoph-2023-0024
  106. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. USA 101, 12428-12433 (2004). https://doi.org/10.1073/pnas.0403048101
  107. S. M. Kamali, E. Arbabi, H. Kwon, and A. Faraon, "Metasurface-generated complex 3-dimensional optical fields for interference lithography," Proc. Natl. Acad. Sci. USA 116, 21379-21384 (2020). https://doi.org/10.1073/pnas.1908382116
  108. L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, "Holographic Composites with Gold Nanoparticles: Nanoparticles Promote Polymer Segregation," Chem. Mater. 20, 4619-4627 (2008). https://doi.org/10.1021/cm8005315
  109. K. Kim, H. Park, K. J. Park, S. H. Park, H. H. Kim, and S. Lee, "Light-directed soft mass migration for micro/nanophotonics," Adv. Opt. Mater. 7, 1900074 (2019).
  110. H. Ko, J. Kim, J. H. Hong, J. Cheon, S. Lee, M. Jang, and W. Choi, "Acousto-optic volumetric gating for reflection-mode deep optical imaging within a scattering medium," ACS Photonics 10, 3664-3673 (2023). https://doi.org/10.1021/acsphotonics.3c00769
  111. J.-H. Huh, K. Kim, E. Im, J. Lee, Y. D. Cho, and S. Lee, "Exploiting colloidal metamaterials for achieving unnatural optical refractions," Adv. Mater. 32, 2001806 (2020).
  112. K. Kim, S. J. Yoo, J.-H. Huh, Q-H. Park, and S. Lee, "Limitations and opportunities for optical metafluids to achieve an unnatural refractive index," ACS Photonics 4, 2298-2311 (2017). https://doi.org/10.1021/acsphotonics.7b00546
  113. J.-H. Huh, J. Lee, and S. Lee, "Soft plasmonic assemblies exhibiting unnaturally high refractive index," Nano Lett. 20, 4768-4774 (2020). https://doi.org/10.1021/acs.nanolett.0c00422
  114. R. M. Kim, J.-H. Huh, S.J. Yoo, T. G. Kim, C. Kim, H. Kim, J. H. Han, N. H. Cho, Y.-C. Lim, S. W. Im, E. Im, J. R. Jeong, M. H. Lee, T.-Y. Yoon, H.-Y. Lee, Q-H. Park, S. Lee, and K. T. Nam, "Enantioselective sensing by collective circular dichroism," Nature 612, 470-476 (2022). https://doi.org/10.1038/s41586-022-05353-1
  115. J. Lee, J.-H. Huh, and S. Lee, "DNA base pair stacking crystallization of gold colloids," Langmuir 36, 5118-5125 (2020). https://doi.org/10.1021/acs.langmuir.0c00239