Objective: The study aimed to assess the prevalence of dental malocclusion, orthodontic parameters, and parafunctional habits in children with developmental dyslexia (DD). Methods: Forty pediatric patients (67.5% boys and 32.5% girls, mean age: 11.02 ± 2.53 years, range: 6-15 years) with DD were compared with 40 age- and sex-matched healthy participants for prevalence of dental malocclusion, orthodontic parameters, and parafunctional habits. Dental examinations were performed by an orthodontist. Results: Pediatric patients with DD exhibited a significantly higher prevalence of Angle Class III malocclusion (22.5% vs. 5.0%, P = 0.024), deep bite (27.5% vs. 7.5%, P = 0.019), midline deviation (55.0% vs. 7.5%, P < 0.0001), midline diastemas (32.5% vs. 7.5%, P = 0.010), wear facets (92.5% vs. 15.0%, P < 0.0001), self-reported nocturnal teeth grinding (82.5% vs. 7.5%, P < 0.0001), nail biting (35.0% vs. 0.0%, P < 0.0001), and atypical swallowing (85.0% vs. 17.5%, P < 0.0001) compared to that in healthy controls. Conclusions: Pediatric patients with DD showed a higher prevalence of Class III malocclusion, greater orthodontic vertical and transverse discrepancies, and incidence of parafunctional activities. Clinicians and dentists should be aware of the vulnerability of children with dyslexia for exhibiting malocclusion and encourage early assessment and multidisciplinary intervention.
Bong, Jiwan;Lee, Chanhee;Choe, Suhyeon;Kim, Han Soo;Jeong, Kwangbok
Korean Journal of Construction Engineering and Management
/
v.25
no.5
/
pp.73-81
/
2024
In South Korea, NOX emissions are a major concern, leading to acid rain and smog, harming both the atmosphere and human health, particularly in urban areas. This study seeks to determine the most advantageous pavement material for NOX reduction in urban areas and assess whether photocatalytic pavement blocks, proven to reduce NOX emissions, can serve as a viable alternative to conventional cement pavement blocks. To achieve this, a comparative life cycle cost (LCC) analysis was conducted between photocatalytic pavement blocks and conventional cement pavement blocks installed for their NOX reduction capabilities. The cost-saving benefits of NOX reduction were monetized for photocatalytic pavement blocks. The analysis period was based on the least common multiple of the replacement cycles of both pavement materials: 30 years. The results revealed that while photocatalytic pavement blocks initially produce higher installation costs than cement pavement blocks, they offer greater cost savings in terms of total cost and net present value due to their NOX reduction effect over the life cycle. Additionally, the cost-saving effects of photocatalytic pavement blocks are even more pronounced because their replacement period is 5 years longer than that of cement pavement blocks. This study holds significance in performing an LCC analysis of the previously unanalyzed photocatalytic pavement blocks while also demonstrating their potential as substitutes for cement pavement blocks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.7
/
pp.1706-1725
/
2024
The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.
Ye Jun Lee;Yong Kuk Kim;Da Young Kim;Jeongtack Min;Min-Kyu Kim
Journal of the Korea Society of Computer and Information
/
v.29
no.8
/
pp.43-51
/
2024
This paper proposes a method for acquiring and analyzing ocular data using a special-purpose diver mask targeted at divers who primarily engage in underwater activities. This involves tracking the user's gaze with the help of a custom-built ocular dataset and a YOLOv8-nano model developed for this purpose. The model achieved an average processing time of 45.52ms per frame and successfully recognized states of eyes being open or closed with 99% accuracy. Based on the analysis of the ocular data, a gaze tracking algorithm was developed that can map to real-world coordinates. The validation of this algorithm showed an average error rate of about 1% on the x-axis and about 6% on the y-axis.
Tae-Wook Kim;Ji-Woong Yang;Hyeon-Jin Jung;Han-Jin Lee;Ellen J. Hong
Journal of the Korea Society of Computer and Information
/
v.29
no.8
/
pp.53-58
/
2024
Traffic accidents are not only a threat to human lives but also pose significant societal costs. Recently, research has been conducted to address the issue of traffic accidents by predicting the risk using deep learning technology and spatiotemporal information of roads. However, while traffic accidents are influenced not only by the spatiotemporal information of roads but also by human factors, research on the latter has been relatively less active. This paper analyzes driver groups and characteristics by applying clustering techniques to a traffic accident dataset and proposes and applies a method to calculate the Risk Level for each driver group and characteristic. In this process, the preprocessing technique suggested in this paper demonstrates a higher Silhouette Score of 0.255 compared to the commonly used One-Hot Embedding & Min-Max Scaling techniques, indicating its suitability as a preprocessing method.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.4
/
pp.77-89
/
2024
Knee osteoarthritis (OA) is a very common musculoskeletal disorder worldwide. The assessment of knee osteoarthritis, which requires a rapid and accurate initial diagnosis, is determined to be different depending on the currently dispersed classification system, and each classification system has different criteria. Also, because the medical staff directly sees and reads the X-ray pictures, it depends on the subjective opinion of the medical staff, and it takes time to establish an accurate diagnosis and a clear treatment plan. Therefore, in this study, we designed the stenosis length measurement algorithm and Osteophyte detection and length measurement algorithm, which are the criteria for determining the knee osteoarthritis grade, separately using CNN, which is a deep learning technique. In addition, we would like to create a grading system that integrates and complements the existing classification system and show results that match the judgments of actual medical staff. Based on publicly available OAI (Osteoarthritis Initiative) data, a total of 9,786 knee osteoarthritis data were used in this study, eventually achieving an Accuracy of 69.8% and an F1 score of 76.65%.
Jeonghun Seo;Jiin Hwang;Pal Abhishek;Haeun Lee;Daesik Ko;Seokil Song
Journal of Platform Technology
/
v.12
no.3
/
pp.62-70
/
2024
Recent surveillance systems employ multiple sensors, such as cameras and radars, to enhance the accuracy of intrusion detection. However, object recognition through camera (RGB, Thermal) sensors may not always be accurate during nighttime, in adverse weather conditions, or when the intruder is camouflaged. In such situations, it is possible to detect intruders by utilizing the trajectories of objects extracted from camera or radar sensors. This paper proposes a method to detect intruders using only trajectory information in environments where object recognition is challenging. The proposed method involves training an LSTM-Attention based trajectory classification model using normal and abnormal (intrusion, loitering) trajectory data of animals and humans. This model is then used to identify abnormal human trajectories and perform intrusion detection. Finally, the validity of the proposed method is demonstrated through experiments using real data.
Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.149-156
/
2024
This paper implemented a drill bit foreign matter inspection system based on the YOLO V3 algorithm and evaluated its performance. The study trained the YOLO V3 model using 600 training data to distinguish between the normal and foreign matter states of the drill bit. The implemented inspection system accurately analyzed the state of the drill bit and effectively detected defects through automatic inspection. The performance evaluation was performed on drill bits used more than 2,000 times, and achieved a recognition rate of 98% for determining whether resharpening was possible. The goal of foreign matter removal in the cleaning process was evaluated as 99.6%, and the automatic inspection system could inspect more than 500 drill bits per hour, which was about 4.3 times faster than the existing manual inspection method and recorded a high accuracy of 99%. These results show that the automated inspection system can dramatically improve inspection speed and accuracy, and can contribute to quality improvement and cost reduction in manufacturing sites. In future studies, it is necessary to develop more efficient and reliable inspection technology through system optimization and performance improvement.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.1-9
/
2024
In this paper, we propose a comparative analysis to evaluate the impact of activation functions and attention mechanisms on the performance of time-series models for Mars meteorological data. Mars meteorological data are nonlinear and irregular due to low atmospheric density, rapid temperature variations, and complex terrain. We use long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent unit (GRU), and bidirectional GRU (BiGRU) architectures to evaluate the effectiveness of different activation functions and attention mechanisms. The activation functions tested include rectified linear unit (ReLU), leaky ReLU, exponential linear unit (ELU), Gaussian error linear unit (GELU), Swish, and scaled ELU (SELU), and model performance was measured using mean absolute error (MAE) and root mean square error (RMSE) metrics. Our results show that the integration of attentional mechanisms improves both MAE and RMSE, with Swish and ReLU achieving the best performance for minimum temperature prediction. Conversely, GELU and ELU were less effective for pressure prediction. These results highlight the critical role of selecting appropriate activation functions and attention mechanisms in improving model accuracy for complex time-series forecasting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.