Acknowledgement
This study was supported by MSIT (Ministry of Science, ICT), Korea, under the National Program for Excellence in SW, supervised by IITP (Institute of Information & Communications Technology Planning & Evaluation) in 2024 (2021-0-01399).
References
- K. Croswell, "Magnificent Mars," Simon and Schuster, 2003.
- C. P. McKay, "The search for life on Mars," Origins of Life and Evolution of the Biosphere, vol. 27, no. 1, pp. 263-289, Jun. 1997. DOI: 10.1023/A:1006500116990
- R. Pyle, "Space 2.0: How private spaceflight, a resurgent NASA, and international partners are creating a new space age," BenBella Books, 2019.
- S. Singh, P. Singh, S. Rangabhashiyam, and K. K. Srivastava, "Global Climate Change," Elsevier, 2021.
- B. L. Ehlmann et al., "The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds," Journal of Geophysical Research: Planets, vol. 121, no. 10, pp. 1927-1961, Sep. 2016. DOI: 10.1002/2016JE005134
- P. L. Read, S. R. Lewis, and D. P. Mulholland, "The physics of Martian weather and climate: a review," Reports on Progress in Physics, vol. 78, no. 12, p. 125901, Nov. 2015. DOI: 10.1088/0034-4885/78/12/125901
- A. Barjasteh, S. H. Ghafouri, and M. Hashemi, "A hybrid model based on discrete wavelet transform (DWT) and bidirectional recurrent neural networks for wind speed prediction," Engineering Applications of Artificial Intelligence, vol. 127, p. 107340, Jan. 2024. DOI: 10.1016/j.engappai.2023.107340
- Z. Yuan, Z. Yang, Y. Ling, C. Wu, and C. Li, "Spatiotemporal attention mechanism-based deep network for critical parameters prediction in chemical process," Process Safety and Environmental Protection, vol. 155, pp. 401-414, Nov. 2021. DOI: 10.1016/j.psep.2021.09.024
- Z. Niu, G. Zhong, and H. Yu, "A review on the attention mechanism of deep learning," Neurocomputing, vol. 452, pp. 48-62, Sep. 2021. DOI: 10.1016/j.neucom.2021.03.091
- J. Pla-Garcia et al., "Meteorological predictions for Mars 2020 Perseverance Rover landing site at Jezero crater," Space Science Reviews, vol. 216, p. 148, Dec. 2020. DOI: 10.1007/s11214-020-00763-x
- I. Priyadarshini and V. Puri, "Mars weather data analysis using machine learning techniques," Earth Science Informatics, vol. 14, pp. 1885-1898, Dec. 2021. DOI: 10.1007/s12145-021-00643-0
- P. Pant et al., "Machine Learning Techniques for Analysis of Mars Weather Data," Proceedings of the 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1-7, Bucharest, Romania, Jun. 2023. DOI: 10.1109/ECAI58194.2023.10194233.
- J. Moon, Y. Han, H. Chang, and S. Rho, "Multistep-ahead solar irradiance forecasting for smart cities based on LSTM, Bi-LSTM, and GRU neural networks," The Journal of Society for e-Business Studies, vol. 27, no. 4, pp. 27-52, Nov. 2022. DOI: 10.7838/jsebs.2022.27.4.027
- J. Moon, S. Park, S. Rho, and E. Hwang, "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, vol. 15, no. 9, p. 1550147719877616, Sep. 2019. DOI: 10.1177/1550147719877616
- S. Jung, J. Moon, S. Park, and E. Hwang, "A probabilistic short-term solar radiation prediction scheme based on attention mechanism for smart island," KIISE Transactions on Computing Practices, vol. 25, no. 12, pp. 602-609, Dec. 2019. DOI: 10.5626/KTCP.2019.25.12.602
- S. Jung, J. Moon, S. Park, and E. Hwang, "An attention-based multilayer GRU model for multistep-ahead short-term load forecasting," Sensors, vol. 21, no. 5, p. 1639, Feb. 2021. DOI: 10.3390/s21051639
- D. Atri, N. Abdelmoneim, D. B. Dhuri, and M. Simoni, "Diurnal variation of the surface temperature of Mars with the Emirates Mars Mission: a comparison with Curiosity and Perseverance rover measurements," Monthly Notices of the Royal Astronomical Society: Letters, vol. 518, no. 1, pp. L1-L6, Oct. 2022. DOI: 10.1093/mnrasl/slac094
- C. D. Xu, J. F. Wang, M. G. Hu, and Q. X. Li, "Interpolation of missing temperature data at meteorological stations using P-BSHADE," Journal of Climate, vol. 26, no. 19, pp. 7452-7463, Oct. 2013. DOI: 10.1175/JCLI-D-12-00633.1
- A. Gokhan, C. O. Guzeller, and M. T. Eser, "The effect of the normalization method used in different sample sizes on the success of artificial neural network model," International Journal of Assessment Tools in Education, vol. 6, no. 2, pp. 170-192, Jul. 2019. DOI: 10.21449/ijate.479404
- M. Alizamir et al., "Improving the accuracy of daily solar radiation prediction by climatic data using an efficient hybrid deep learning model: Long short-term memory (LSTM) network coupled with wavelet transform," Engineering Applications of Artificial Intelligence, vol. 123, p. 106199, Aug. 2023. DOI: 10.1016/j.engappai.2023.106199
- M. Bukhari, S. Yasmin, S. Naz, M. Y. Durrani, M. Javaid, J. Moon, and S. Rho, "A smart heart disease diagnostic system using deep vanilla LSTM," Computers, Materials & Continua, vol. 77, no. 1, pp. 1251-1279, Oct. 2023. DOI: 10.32604/cmc.2023.040329
- M. J. Gul, G. M. Urfa, A. Paul, J. Moon, S. Rho, and E. Hwang, "Mid-term electricity load prediction using CNN and Bi-LSTM," The Journal of Supercomputing, vol. 77, pp. 10942-10958, Oct. 2021. DOI: 10.1007/s11227-021-03686-8
- B. Lee, S. Kim, M. Maqsood, J. Moon, and S. Rho, "Advancing autoencoder architectures for enhanced anomaly detection in multivariate industrial time series," Computers, Materials & Continua, vol. 81, no. 1, pp. 1275-1300, Oct. 2024. DOI: 10.32604/cmc.2024.054826
- D. So, J. Oh, I. Jeon, J. Moon, M. Lee, and S. Rho, "BiGTA-Net: A hybrid deep learning-based electrical energy forecasting model for building energy management systems," Systems, vol. 11, no. 9, p. 456, Sep. 2023. DOI: 10.3390/systems11090456
- D. Soydaner, "Attention mechanism in neural networks: where it comes and where it goes," Neural Computing and Applications, vol. 34, pp. 13371-13385, Aug. 2022. DOI: 10.1007/s00521-022-07366-3
- B. Ouyang, Y. Song, Y. Li, G. Sant, and M. Bauchy, "EBOD: An ensemble-based outlier detection algorithm for noisy datasets," Knowledge-Based Systems, vol. 231, p. 107400, Nov. 2021. DOI: 10.1016/j.knosys.2021.107400
- J. Kim, J. Moon, E. Hwang, and P. Kang, "Recurrent inception convolution neural network for multi short-term load forecasting," Energy and Buildings, vol. 194, pp. 328-341, Jul. 2019. DOI: 10.1016/j.enbuild.2019.04.034
- S. Y. Sen and N. Ozkurt, "Convolutional Neural Network Hyperparameter Tuning with Adam Optimizer for ECG Classification," Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1-6, Istanbul, Turkey, Oct. 2020. DOI: 10.1109/ASYU50717.2020.9259896.
- T. Miseta, A. Fodor, and A. Vathy-Fogarassy, "Surpassing early stopping: A novel correlation-based stopping criterion for neural networks," Neurocomputing, vol. 567, p. 127028, Jan. 2024. DOI: 10.1016/j.neucom.2023.127028
- D. Chicco, M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," PeerJ Computer Science, vol. 7, p. e623, Jul. 2021. DOI: 10.7717/peerj-cs.623