• 제목/요약/키워드: data factorization

검색결과 123건 처리시간 0.023초

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • 제11권3호
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

비음수 행렬 분해 (NMF)를 이용한 악보 전사 (Music Transcription Using Non-Negative Matrix Factorization)

  • 박상하;이석진;성굉모
    • 한국음향학회지
    • /
    • 제29권2호
    • /
    • pp.102-110
    • /
    • 2010
  • 악보 전사란, 오디오 파일로부터 음고 (음표의 높낮이)와 리듬 (음표의 길이) 정보를 추출하여 악보를 만드는 것이다. 본 논문에서는 음원 분리 및 데이터 분류에 자주 사용되는 Non-Negative Matrix Factorization (NMF)와 Non-Negative Sparse Coding (NNSC) 방식을 사용하여 오디오 파일을 주파수와 리듬 성분으로 분류하였다. 또한 배음 통합 (subharmonic summation) 방법으로 분류된 주파수들로부터 기본 진동 주파수를 계산하였고, 이로써 악보를 야루는 음표의 높낮이를 정확히 얻을 수 있었다. 제안한 방식으로 악보 전사거 성공적으로 이루어졌고, NMF 혹은 NNSC만 사용하여 악보 전사를 하였던 기존의 논문들에 비해 향상된 결과를 얻을 수 있었다.

Non-negative matrix factorization 을 이용한 마이크로어레이 데이터의 클러스터링 (Clustering gene expression data using Non -Negative matrix factorization)

  • Lee, Min-Young;Cho, Ji-Hoon;Lee, In-Beum
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.117-123
    • /
    • 2004
  • 마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.

  • PDF

쉬어-왑 분해를 이용한 블록 기반의 볼륨 렌더링 기법 (A Block-Based Volume Rendering Algorithm Using Shear-Warp factorization)

  • 권성민;김진국;박현욱;나종범
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권4호
    • /
    • pp.433-439
    • /
    • 2000
  • 볼륨 렌더링은 기하학적인 기본 도형으로 모델링하지 않고, 3차원 데이터를 직접 가시화하는 방법이다. 이런 볼륨 렌더링의 특성으로 말미암아 3차원 영상을 도시할 때에, 복잡한 물체의 경우에도 물체의 표면을 상세하게 표현하는데 유리하여 의료 영상을 가시화하는 쪽으로의 적용이 많이 이루어져 왔다. 일반적으로 볼륨 데이터의 크기가 커서 실시간으로 처리하기 쉽지 않기 때문에, 근래에는 이 렌더링 시간을 줄이기 위해서 많은 여러 가지 렌더링 알고리즘이 제안되었다. 본 논문에서는 부호화 되어 있지 않은 볼륨 데이터를 빠르게 렌더링 하기 위해서, 쉬어-왑 분해를 이용하는 블록 기반의 볼륨 렌더링 기법을 제안한다. 이 방법에서는 블록 기반의 데이터와 함께 장기의 영역 분할 데이터를 동시에 이용하여 볼륨 렌더링을 수행하므로써, 부호화되어 있지 않은 데이터에 대해 렌더링 속도를 증가시킨다. 본 논문에서는 3차원 X-ray CT 흉부 영상과 MR 3차원 두부 영상을 렌더링 함으로써 제안한 방법의 성능을 검증하였다.

  • PDF

불완전계수의 선형모형에서 추정가능함수 (Estimable functions of less than full rank linear model)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.333-339
    • /
    • 2013
  • 본 논문은 불완전계수의 모형행렬을 갖는 선형모형에서 추정가능함수를 다루고 있다. 고정효과 모형의 모수들은 일반적으로 추정가능한 모수가 아니므로 추정가능한 모수들의 함수를 구하기 위한 방법으로 완전계수의 인자분해 방법을 제시하고 있다. 완전계수의 인자분해 방법으로 구해진 추정가능함수의 타당성을 확인하기 위한 사영행렬은 불완전계수의 모형행렬을 구성하는 행벡터로 생성되는 벡터공간으로의 사영행렬과 동일함을 보여주고 있다. 완전계수의 인자분해로 추정가능함수를 구하는 방법과 모수들의 선형함수가 추정가능함수인 가의 확인을 위한 사영행렬의 이용에 관해 벡터공간의 관점에서 다루어지고 있다. 또한, 추정가능함수의 기저 구성에 관한 구체적 논의가 행해지고 있다.

Study on Tag, Trust and Probability Matrix Factorization Based Social Network Recommendation

  • Liu, Zhigang;Zhong, Haidong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2082-2102
    • /
    • 2018
  • In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.

순환 행렬 분해에 의한 DCT/DFT 하이브리드 구조 알고리듬 (DCT/DFT Hybrid Architecture Algorithm Via Recursive Factorization)

  • 박대철
    • 융합신호처리학회논문지
    • /
    • 제8권2호
    • /
    • pp.106-112
    • /
    • 2007
  • 본 논문은 순환 행렬 분해에 의한 DCT와 DFT의 고속 계산을 위한 하이브리드 아키텍쳐 알고리듬을 제안한다. DCT-II와 DFT 변환 행렬의 순환 분해는 알고리듬적으로 구현하기가 유사한 구조를 제공하며 이것은 단순히 스위칭 모드의 제어에 의해 공통 아키텍쳐를 사용할 수 있게 한다. 두 변환간의 연계는 행렬 순환 공식에 기초하여 유도되었다. DCT/DFT 행렬 분해를 위한 하이브리드 구조 설계를 가능하도록 생성 행렬, 삼각함수 항등식 과 관계식을 사용하여 유도되었다. DCT/DFT 하이브리드 아키텍쳐를 수용하는 쿨리-투키 유형의 고속처리 아키텍쳐에 대한 데이터 흐름도를 작성하였다. 이 데이터 흐름도로부터 적절한 크기의 N에 대해 제안한 알고리듬의 계산 복잡도는 기존의 고속 DCT 알고리듬과 비교할만하다. 다른 직교변환 계산에 FFT 구조의 다중 모드 사용 확장을 위해 좀더 확장된 연구가 필요하다.

  • PDF

Estimating People's Position Using Matrix Decomposition

  • Dao, Thi-Nga;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.39-46
    • /
    • 2019
  • Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.

Network intrusion detection method based on matrix factorization of their time and frequency representations

  • Chountasis, Spiros;Pappas, Dimitrios;Sklavounos, Dimitris
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.152-162
    • /
    • 2021
  • In the last few years, detection has become a powerful methodology for network protection and security. This paper presents a new detection scheme for data recorded over a computer network. This approach is applicable to the broad scientific field of information security, including intrusion detection and prevention. The proposed method employs bidimensional (time-frequency) data representations of the forms of the short-time Fourier transform, as well as the Wigner distribution. Moreover, the method applies matrix factorization using singular value decomposition and principal component analysis of the two-dimensional data representation matrices to detect intrusions. The current scheme was evaluated using numerous tests on network activities, which were recorded and presented in the KDD-NSL and UNSW-NB15 datasets. The efficiency and robustness of the technique have been experimentally proved.

볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법 (Cell-Based Wavelet Compression Method for Volume Data)

  • 김태영;신영길
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권11호
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.