Journal of information and communication convergence engineering
/
제11권3호
/
pp.179-184
/
2013
Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.
악보 전사란, 오디오 파일로부터 음고 (음표의 높낮이)와 리듬 (음표의 길이) 정보를 추출하여 악보를 만드는 것이다. 본 논문에서는 음원 분리 및 데이터 분류에 자주 사용되는 Non-Negative Matrix Factorization (NMF)와 Non-Negative Sparse Coding (NNSC) 방식을 사용하여 오디오 파일을 주파수와 리듬 성분으로 분류하였다. 또한 배음 통합 (subharmonic summation) 방법으로 분류된 주파수들로부터 기본 진동 주파수를 계산하였고, 이로써 악보를 야루는 음표의 높낮이를 정확히 얻을 수 있었다. 제안한 방식으로 악보 전사거 성공적으로 이루어졌고, NMF 혹은 NNSC만 사용하여 악보 전사를 하였던 기존의 논문들에 비해 향상된 결과를 얻을 수 있었다.
한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
/
pp.117-123
/
2004
마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.
볼륨 렌더링은 기하학적인 기본 도형으로 모델링하지 않고, 3차원 데이터를 직접 가시화하는 방법이다. 이런 볼륨 렌더링의 특성으로 말미암아 3차원 영상을 도시할 때에, 복잡한 물체의 경우에도 물체의 표면을 상세하게 표현하는데 유리하여 의료 영상을 가시화하는 쪽으로의 적용이 많이 이루어져 왔다. 일반적으로 볼륨 데이터의 크기가 커서 실시간으로 처리하기 쉽지 않기 때문에, 근래에는 이 렌더링 시간을 줄이기 위해서 많은 여러 가지 렌더링 알고리즘이 제안되었다. 본 논문에서는 부호화 되어 있지 않은 볼륨 데이터를 빠르게 렌더링 하기 위해서, 쉬어-왑 분해를 이용하는 블록 기반의 볼륨 렌더링 기법을 제안한다. 이 방법에서는 블록 기반의 데이터와 함께 장기의 영역 분할 데이터를 동시에 이용하여 볼륨 렌더링을 수행하므로써, 부호화되어 있지 않은 데이터에 대해 렌더링 속도를 증가시킨다. 본 논문에서는 3차원 X-ray CT 흉부 영상과 MR 3차원 두부 영상을 렌더링 함으로써 제안한 방법의 성능을 검증하였다.
Journal of the Korean Data and Information Science Society
/
제24권2호
/
pp.333-339
/
2013
본 논문은 불완전계수의 모형행렬을 갖는 선형모형에서 추정가능함수를 다루고 있다. 고정효과 모형의 모수들은 일반적으로 추정가능한 모수가 아니므로 추정가능한 모수들의 함수를 구하기 위한 방법으로 완전계수의 인자분해 방법을 제시하고 있다. 완전계수의 인자분해 방법으로 구해진 추정가능함수의 타당성을 확인하기 위한 사영행렬은 불완전계수의 모형행렬을 구성하는 행벡터로 생성되는 벡터공간으로의 사영행렬과 동일함을 보여주고 있다. 완전계수의 인자분해로 추정가능함수를 구하는 방법과 모수들의 선형함수가 추정가능함수인 가의 확인을 위한 사영행렬의 이용에 관해 벡터공간의 관점에서 다루어지고 있다. 또한, 추정가능함수의 기저 구성에 관한 구체적 논의가 행해지고 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권5호
/
pp.2082-2102
/
2018
In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.
본 논문은 순환 행렬 분해에 의한 DCT와 DFT의 고속 계산을 위한 하이브리드 아키텍쳐 알고리듬을 제안한다. DCT-II와 DFT 변환 행렬의 순환 분해는 알고리듬적으로 구현하기가 유사한 구조를 제공하며 이것은 단순히 스위칭 모드의 제어에 의해 공통 아키텍쳐를 사용할 수 있게 한다. 두 변환간의 연계는 행렬 순환 공식에 기초하여 유도되었다. DCT/DFT 행렬 분해를 위한 하이브리드 구조 설계를 가능하도록 생성 행렬, 삼각함수 항등식 과 관계식을 사용하여 유도되었다. DCT/DFT 하이브리드 아키텍쳐를 수용하는 쿨리-투키 유형의 고속처리 아키텍쳐에 대한 데이터 흐름도를 작성하였다. 이 데이터 흐름도로부터 적절한 크기의 N에 대해 제안한 알고리듬의 계산 복잡도는 기존의 고속 DCT 알고리듬과 비교할만하다. 다른 직교변환 계산에 FFT 구조의 다중 모드 사용 확장을 위해 좀더 확장된 연구가 필요하다.
International journal of advanced smart convergence
/
제8권2호
/
pp.39-46
/
2019
Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.
In the last few years, detection has become a powerful methodology for network protection and security. This paper presents a new detection scheme for data recorded over a computer network. This approach is applicable to the broad scientific field of information security, including intrusion detection and prevention. The proposed method employs bidimensional (time-frequency) data representations of the forms of the short-time Fourier transform, as well as the Wigner distribution. Moreover, the method applies matrix factorization using singular value decomposition and principal component analysis of the two-dimensional data representation matrices to detect intrusions. The current scheme was evaluated using numerous tests on network activities, which were recorded and presented in the KDD-NSL and UNSW-NB15 datasets. The efficiency and robustness of the technique have been experimentally proved.
본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.