References
- A. Kundu, S. Sural, and A. K. Majumdar, Database intrusion detection using sequence alignment, Int. J. Inf. Security 9 (2010), 179-191. https://doi.org/10.1007/s10207-010-0102-5
- D. Meyer, Matrix Analysis And Applied Linear Algebra, SIAM, Philadelphia 2000.
- H. Demirel, C. Ozcinar, and G. Anbarjafari, Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition, IEEE Geosci. Remote Sens. Lett. 7 (2010), 333-337. https://doi.org/10.1109/LGRS.2009.2034873
- N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev. 53 (2011), 217-288. https://doi.org/10.1137/090771806
- H. Anat and J. Darcy, The impact of denial of service attack announcements on the market value of firms, Risk Manage. Insurance Rev. 6 (2003), 97-121. https://doi.org/10.1046/J.1098-1616.2003.026.x
- S. Paliwal and G. Ravindra, Denial-of-service, probing and remote to user (R2L) attack detection using genetic algorithm, Int. J. Comput. Applicat. 60 (2012), 57-62.
- S. Antonatos, K. Anagnostakis, and E. Markatos, Generating realistic workloads for network intrusion detection systems, in Proc. ACM Workshop Softw. Performance (Redwood City, CA, USA), Jan. 2004, pp. 1-9.
- E. Ireland, Intrusion detection with genetic algorithms and fuzzy logic, in Proc. UMMC SciSenior Seminar Conf. (Morris, MN, USA), 2013, pp. 1-30
- K. Scarfone and P. Mell, Special Publication 800-94: Guide to intrusion detection and prevention systems (IDPS), National Institute of Standards and Technology (NIST), 2007.
- P. Garcia-Teodoro et al., Anomaly-based network intrusion detection: Techniques, systems and challenges, Comput. Security 28 (2009), 18-28. https://doi.org/10.1016/j.cose.2008.08.003
- K. Wang, J. Salvatore, and S. J. Stolfo, Recent Advances in Intrusion Detection, In Anomalous payload-based network intrusion detection, Springer: Berlin Heidelberg, 2007, pp. 203-222.
- L. Tan, B. Brotherton, and T. Sherwood, Bit-split string-matching engines for intrusion detection and prevention, ACM Trans. Architecture Code Optimization 3 (2006), 3-34. https://doi.org/10.1145/1132462.1132464
- Y. Qu and Q. Lu, Effectively mining network traffic intelligence to detect malicious stealthy port scanning to cloud servers, J. Internet Technol. 15 (2014), 841-852.
- K. Watanabe, N. Tsuruoka, and R. Himeno. Performance of network intrusion detection cluster system, in Proc. Int. Symp. High Performance Comput. (Tokyo, Japan), Oct. 2003, pp. 278-287.
- M. J. Bastiaans, T. Alieva, and J. Stankovic, On rotated time-frequency kernels, IEEE Signal Process. Lett. 9 (2002), 378-381. https://doi.org/10.1109/LSP.2002.805118
- F. Hlawatsch and G. F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representations, IEEE Signal Process Mag. 9 (1992), 21-67. https://doi.org/10.1109/79.127284
- L. Cohen, Time-frequency distributions-A review, Proc. IEEE 77 (1989), 941-981. https://doi.org/10.1109/5.30749
- S. Chountasis, D. Pappas, and V. N. Katsikis, Signal watermarking in bi-dimensional representations using matrix factorizations, Comput. Appl. Math. 36 (2017), 341-357. https://doi.org/10.1007/s40314-015-0230-7
- D. Lay, Linear Algebra and its Applications, 4th ed, Addison-Wesley, Boston, MA, USA, 2012.
- H. Liu, C. Xiangdong, and L. Shalini, Understanding modern intrusion detection systems: A survey, arXive preprint, 2017, arXiv:1708.07174v2[cs.CR].
- P. Aggarwala and S. K. Sharma, Analysis of KDD dataset attributes- class wise for intrusion detection, Procedia Comput. Sci. 57 (2015), 842-851. https://doi.org/10.1016/j.procs.2015.07.490
- N. Moustafa and J. Slay, The evaluation of network anomaly detection systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set, Inf. Secur. J. 25 (2016), 18-31. https://doi.org/10.1080/19393555.2015.1125974