• Title/Summary/Keyword: data distributions

Search Result 2,607, Processing Time 0.024 seconds

Default Bayesian testing for the scale parameters in two parameter exponential distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.949-957
    • /
    • 2013
  • In this paper, we consider the problem of testing the equality of the scale parameters in two parameter exponential distributions. We propose Bayesian testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Thus, we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Objective Bayesian testing for the location parameters in the half-normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1265-1273
    • /
    • 2011
  • This article deals with the problem of testing the equality of the location parameters in the half-normal distributions. We propose Bayesian hypothesis testing procedures for the equality of the location parameters under the noninformative prior. The non-informative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to arbitrary constants. This problem can be deal with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Noninformative priors for common scale parameter in the regular Pareto distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Kim, Yong-Ku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.353-363
    • /
    • 2012
  • In this paper, we introduce the noninformative priors such as the matching priors and the reference priors for the common scale parameter in the Pareto distributions. It turns out that the posterior distribution under the reference priors is not proper, and Jeffreys' prior is not a matching prior. It is shown that the proposed first order prior matches the target coverage probabilities in a frequentist sense through simulation study.

Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1569-1579
    • /
    • 2014
  • This article deals with the problem of testing for the equality of the shape parameters in two inverse Weibull distributions. We propose Bayesian hypothesis testing procedures for the equality of the shape parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Tests for Exponentiality Against Harmonic New Better Than Used in Expectation Property of Life Distributions

  • Al-Ruzaiza, A.S.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This paper proposes a U-test statistic for the problem of testing that a life distribution is exponential against the alternative that it is harmonic new better (worse) than used in expectation upper tail HNBUET (HNWUET), but not exponential on complete data. Selected critical values are tabulated for sample sizes n =5(1)60. The asymptotic normality of the statistic is proved and a comparison is made of the asymptotic efficiency between the statistic and other statistics. The power of the test is studied by simulation. A test for HNBUET in the case of randomly right-censored data is also considered. An application of the proposed test statistic in medical sciences is given.

  • PDF

Depth-Based rank test for multivariate two-sample scale problem

  • Digambar Tukaram Shirke;Swapnil Dattatray Khorate
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.227-244
    • /
    • 2023
  • In this paper, a depth-based nonparametric test for a multivariate two-sample scale problem is proposed. The proposed test statistic is based on the depth-induced ranks and is thus distribution-free. In this article, the depth values of data points of one sample are calculated with respect to the other sample or distribution and vice versa. A comprehensive simulation study is used to examine the performance of the proposed test for symmetric as well as skewed distributions. Comparison of the proposed test with the existing depth-based nonparametric tests is accomplished through empirical powers over different depth functions. The simulation study admits that the proposed test outperforms existing nonparametric depth-based tests for symmetric and skewed distributions. Finally, an actual life data set is used to demonstrate the applicability of the proposed test.

Wave Analysis Method for Offshore Wind Power Design Suitable for Suitable for Ulsan Area

  • Woobeom Han;Kanghee Lee;Seungjae Lee
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.2-16
    • /
    • 2024
  • Various loads induced by marine environmental conditions, such as waves, currents, and wind, are crucial for the operation and viability of offshore wind power (OWP) systems. In particular, waves have a significant impact on the stress and fatigue load of offshore structures, and highly reliable design parameters should be derived through extreme value analysis (EVA) techniques. In this study, extreme wave analyses were conducted with various Weibull distribution models to determine the reliable design parameters of an OWP system suitable for the Ulsan area. Forty-three years of long-term hindcast data generated by a numerical wave model were adopted as the analyses data, and the least-squares method was used to estimate the parameters of the distribution function for EVA. The inverse first-order reliability method was employed as the EVA technique. The obtained results were compared among themselves under the assumption that the marginal probability distributions were 2p, 3p, and exponentiated Weibull distributions.

Modeling sharply peaked asymmetric multi-modal circular data using wrapped Laplace mixture (겹친라플라스 혼합분포를 통한 첨 다봉형 비대칭 원형자료의 모형화)

  • Na, Jong-Hwa;Jang, Young-Mi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.863-871
    • /
    • 2010
  • Until now, many studies related circular data are carried out, but the focuses are mainly on mildly peaked symmetric or asymmetric cases. In this paper we studied a modeling process for sharply peaked asymmetric circular data. By using wrapped Laplace, which was firstly introduced by Jammalamadaka and Kozbowski (2003), and its mixture distributions, we considered the model fitting problem of multi-modal circular data as well as unimodal one. In particular we suggested EM algorithm to find ML estimates of the mixture of wrapped Laplace distributions. Simulation results showed that the suggested EM algorithm is very accurate and useful.