DOI QR코드

DOI QR Code

Wave Analysis Method for Offshore Wind Power Design Suitable for Suitable for Ulsan Area

  • Woobeom Han (Green Energy Research Team, Korea Marine Equipment Research Institute) ;
  • Kanghee Lee (Green Energy Research Team, Korea Marine Equipment Research Institute) ;
  • Seungjae Lee (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime and Ocean University)
  • Received : 2024.03.19
  • Accepted : 2024.06.03
  • Published : 2024.06.25

Abstract

Various loads induced by marine environmental conditions, such as waves, currents, and wind, are crucial for the operation and viability of offshore wind power (OWP) systems. In particular, waves have a significant impact on the stress and fatigue load of offshore structures, and highly reliable design parameters should be derived through extreme value analysis (EVA) techniques. In this study, extreme wave analyses were conducted with various Weibull distribution models to determine the reliable design parameters of an OWP system suitable for the Ulsan area. Forty-three years of long-term hindcast data generated by a numerical wave model were adopted as the analyses data, and the least-squares method was used to estimate the parameters of the distribution function for EVA. The inverse first-order reliability method was employed as the EVA technique. The obtained results were compared among themselves under the assumption that the marginal probability distributions were 2p, 3p, and exponentiated Weibull distributions.

Keywords

Acknowledgement

This work was supported by by the Ministry of Trade, Industry and Energy, (MOTIE) and the Korea Energy Technology Evaluation and Planning (KETEP) [Grant Number: 20228520020020].

References

  1. Olabi, A.G., Obaideen, K., Abdelkareem, M.A., AlMallahi, M.N., Shehata, N., Alami, A.H., Mdallal, A., Hassan, A.A.M., and Sayed, E.T., 2023, "Wind energy contribution to the sustainable development goals: Case study on London array", Sustainability., 15(5), 4641. 
  2. Barooni, M., Ashuri, T., Velioglu Sogut, D., Wood, S., and Ghaderpour Taleghani, S., 2023, "Floating offshore wind turbines: Current status and future prospects", Energies, 16(1), 2. 
  3. AEGIR., PONDERA., and COWI., 2021, "Accelerating South Korean offshore wind through partnerships: A Scenario-based study of supply chain, levelized cost of energy and employment effects", https://www.rvo.nl/sites/default/files/2021/06/Accelerating%20Offshore%20Wind%20South%20Korea%20May%202021.pdf. 
  4. Ko, D.H., Jeong, S.T., Cho, H., and Kang, K.S., 2014, "Extreme offshore wind estimation using typhoon simulation", J. Korean Soc. Coast. Ocean Eng., 26(1), 16-24. 
  5. Isobsen, I., 2005, "Petroleum and natural gas industries-Specific requirements for offshore structure-Part 1: Metocean Design and Operating Conditions", British Standard Institute, 19901-19901. 
  6. Sheridan, L.M., Krishnamurthy, R., Gorton, A.M., Shaw, W.J., and Newsom, R.K., 2020, "Validation of reanalysis-based offshore wind resource characterization using lidar buoy observations", Web. mar technol soc j., 54, 44-61. 
  7. Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., and Reichle, R., et al., 2017, "The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)", J. Clim., 30, 5419-5454. 
  8. Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.T., Chuang, H.Y., and Iredell, M., et al., 2011, "The NCEP climate forecast system version 2 (CFSv2) 6-hourly products", Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 10, Dp. D61C1TXF. 
  9. Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.T., Chuang, H.Y., and Iredell, M., et al., 2014, "The NCEP climate forecast system version 2", J. Clim., 27(6), 2185-2208. 
  10. Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., and Berbery, E.H., et al., 2006, "North American regional reanalysis (NARR)", Bull. Amer. Meteor. Soc., 87, 343-360. 
  11. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D., et al., 2020, "The ERA5 global reanalysis", Quart. J. Royal Meteorol. Soc., 146(730), 1999-2049. 
  12. Benjamin, S.G., Weygandt, S.S., Brown, J.M., Hu, M., Alexander, C.R., Smirnova, T.G., Olson, J.B., James, E.P., Dowell, D.C., and Grell, G.A., et al., 2016, "A North American hourly assimilation and model forecast cycle: The rapid refresh", Mon. Weather Rev., 144(4), 1669-1694. 
  13. Sheridan, L.M., Krishnamurthy, R., Garcia Medina, G., Gaudet, B.J., Gustafson, W.I., Mahon, A.M., Shaw, W.J., Newsom, R.K., Pekour, M., and Yang, Z., 2022, "Offshore reanalysis wind speed assessment across the wind turbine rotor layer off the United States Pacific coast", Wind Energ. Sci., 7(5), 2059-2084. 
  14. Sharmar, V., and Markina, M., 2020, "Validation of global wind wave hindcasts using ERA5, MERRA2, ERA-Interim and CFSRv2 reanalyzes", IOP Conf. Ser.: Earth Environ. Sci., 606, 012056. 
  15. Jeong, W., Oh, S., and Eum, H.S., 2016, "Analysis of wave climate around Korea based on long-term hindcast and coastal observation data", J. Coast. Res. Spec., 75(sp1), 735-739. 
  16. Eum, H.-S., Jeong, W.-M., Chang, Y.S., Oh, S.-H., and Park, J.-J., 2020, "Wave energy in Korean Seas from 12-year wave hindcasting", J. Mar. Sci. Eng., 8(3), 161. 
  17. Pobocikova, I., Michalkova, M., Sedliackova, Z., and Jurasova, D., 2023, "Modelling the wind speed using exponentiated Weibull distribution: Case study of Poprad-Tatry, Slovakia", Appl. Sci., 13(6), 4031. 
  18. Park, S.B., Shin, S.Y., Shin, D.G., Jung, K.H., Choi, Y.H., Lee, J., and Lee, S.J., 2020, "Extreme value analysis of metocean data for Barents Sea", J. Ocean Eng. Technol., 34(1), 26-36. 
  19. Draxl, C., Hodge, B.M., Clifton, A., and McCaa, J., 2015, " Overview and meteorological validation of the wind integration national dataset toolkit. technical report", National Renewable Energy Laboratory, https://doi.org/10.2172/1214985. 
  20. Mathew, S., 2006, "Wind energy: fundamentals, resource analysis and economics", Springer, 68-78. 
  21. Winterstein, S.R. Ude, T.C., Cornell, C.A., Bjerager, P., and Haver, S., 1993, "Environmental parameters for extreme response: Inverse form with omission factors", Proc. ICOSSAR-93, Innsbruck, Austria, 551-557. 
  22. Morken, M.H., 2014, "A comparison of various approaches for predicting extreme wave induced response for design of offshore structures", M.S. thesis, University of Stavanger, Norway. 
  23. Harver, S., and Winterstein, S.R., 2008, "Environmental contour lines: A method for estimating long-term extreme by a short-term analysis", Trans. Soc. J. Nav. Archit. Mar. Eng., 116, 116-127. 
  24. Rosenblatt, M., 1952, "Remarks on a multivariate transformation", Ann. Math. Statist., 23(3), 470-472. 
  25. Bitner-Gregersen, E.M., 2015, "Joint met-ocean description for design and operations of marine structures", Appl. Ocean Res., 51, 279-292.