References
- Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations. Journal of Econometrics, 21, 287-306. https://doi.org/10.1016/0304-4076(83)90047-7
- Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.1080/01621459.1989.10478875
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et. al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
- Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.
- Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
- Datta, G. S. and Ghosh, M. (1995b). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
- Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors. Calcutta Statistical Association Bulletin, 50, 179-192. https://doi.org/10.1177/0008068320000306
- DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted prole likelihood. Journal of Royal Statistical Society B, 56, 397-408.
- lfessi, A. and Jin, C. (1996). On robust estimation of the common scale parameter of several Pareto distributions. Statistics & Probability Letters, 29, 345-352. https://doi.org/10.1016/0167-7152(95)00190-5
- Fernandez, A. J. (2008). Highest posterior density estimation form multiply censored Pareto data. Statistical Papers, 49, 333-341.
- Geisser, S. (1984). Prediction Pareto and exponential observables. Canadian Journal of Statistics, 12, 143-152. https://doi.org/10.2307/3315178
- Geisser, S. (1985). Interval prediction for Pareto and exponential observables. Journal of Econometrics, 29, 173-185. https://doi.org/10.1016/0304-4076(85)90038-7
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et. al., Oxford University Press, Oxford, 195-210.
- Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statistics & Decisions, 13, 131-139.
- Kang, S. G. (2010). Noninformative priors for the common scale parameter in Pareto distribution. Journal of the Korean Data & Information Science Society, 21, 335-343.
- Kim, D. H., Kang, S. G. and Lee, W. D. (2007). Noninformative priors for the common shape parameter in the gamma distributions. Journal of the Korean Data & Information Science Society, 18, 247-257.
- Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
- Ko, J. H. and Kim, Y. H. (1999). Bayesian prediction inference for censored Pareto model. Journal of the Korean Data & Information Science Society, 10, 147-154.
- Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 55, 170-178.
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Nigm, A. M. and Hamdy, H. L. (1987). Bayesian prediction bounds for the Pareto lifetime model. Communications in Statistics: Theory and Methods, 16, 1761-1772. https://doi.org/10.1080/03610928708829470
- Stein, C. (1985). On the coverage probability of condence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
- Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Tiwari, R. C., Yang, Y. and Zalkikar, J. N. (1996). Bayes estimation for the Pareto failure-model using gibbs sampling. IEEE Transactions on Reliability, 45, 471-476. https://doi.org/10.1109/24.537018
- Welch, B. L. and Peers, H. W. (1963). On formulae for condence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 25, 318-329.