References
- Arnold, B. C. (1970). Inadmissibility of the usual scale estimate for a shifted exponential distribution. Journal of the American Statistical Association, 65, 1260-1264. https://doi.org/10.1080/01621459.1970.10481162
- Bain, L. J. (1978). Statistical analysis of reliability and life testing. Marcel Dekker, New York.
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
- Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: the median intrinsic Bayes factor. Sankya B, 60, 1-18.
- Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 38, edited by P. Lahiri, Beachwood, Ohio, 135-207.
- Bobotas, P. and Kourouklis, S. (2011). Improved estimation of the scale parameter, the hazard rate parameter and the ratio of the scale parameters in exponential distributions: An integrated approach. Journal of Statistical Planning and Inference, 141, 2399-2416. https://doi.org/10.1016/j.jspi.2011.01.025
- Brewster, J. F. (1974). Alternative estimators for the scale parameter of the exponential distribution with unknown location. The Annals of Statistics, 2, 21-38. https://doi.org/10.1214/aos/1176342610
- Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test, 6, 159-186. https://doi.org/10.1007/BF02564432
- Johnson, N. L. and Kotz, S. (1970). Continuous univariate distributions, Vol. 2, Wiley, New York.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Reference priors for the location parameter in the exponential distribution. Journal of Korean Data & Information Science Society, 19, 1409-1418.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2011). Default Bayesian testing for the bivariate normal correlation coefficient. Journal of Korean Data & Information Science Society, 22, 1007-1016.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Default Bayesian testing on the common mean of several normal distributions. Journal of the Korean Data & Information Science Society, 23, 605-616. https://doi.org/10.7465/jkdi.2012.23.3.605
- Kubokawa, T. (1994). A unified approach to improving equivariant estimators. The Annals of Statistics, 22, 290-299. https://doi.org/10.1214/aos/1176325369
- Lawless, J. F. and Singhal, K. (1980). Analysis of data from life-test experiments under an exponential model. Naval Research Logistics Quarterly, 27, 323-334. https://doi.org/10.1002/nav.3800270215
- Madi, M. (2008). Improved estimation of an exponential scale ratio based on records. Statistics and Probability Letters, 78, 165-172. https://doi.org/10.1016/j.spl.2007.05.013
- Madi, M. and Tsui, K. W. (1990). Estimation of the ratio of the scale parameters of two exponential distribution with unknown location parameters. Annals of the Institute of Statistical Mathematics, 42, 77-87. https://doi.org/10.1007/BF00050780
- O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
- O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
- Petropoulos, C. and Kourouklis, S. (2002). A class of improved estimators for the scale parameter of an exponential distribution with unknown location. Communications in Statistics-Theory and Methods, 31, 325-335. https://doi.org/10.1081/STA-120002851
- Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
- Wu, S. F. and Wu, C. C. (2005). Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity. Journal of Statistical Planning and Inference, 134, 392-408. https://doi.org/10.1016/j.jspi.2004.04.015
- Zelen, M. (1966). Application of exponential models to problems in cancer research. Journal of Royal Statistical Society A, 129, 368-398. https://doi.org/10.2307/2343503
- Zidek, J. V. (1973). Estimating the scale parameter of the exponential distribution with unknown location. The Annals of Statistics, 1, 264-278. https://doi.org/10.1214/aos/1176342364
Cited by
- Default Bayesian testing for scale parameters in the log-logistic distributions vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1501
- Bayesian testing for the homogeneity of the shape parameters of several inverse Gaussian distributions vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.835
- Default Bayesian one sided testing for the shape parameter in the log-logistic distribution vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1583
- Default Bayesian testing equality of scale parameters in several inverse Gaussian distributions vol.26, pp.3, 2015, https://doi.org/10.7465/jkdi.2015.26.3.739
- Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1569
- Objective Bayesian multiple hypothesis testing for the shape parameter of generalized exponential distribution vol.28, pp.1, 2013, https://doi.org/10.7465/jkdi.2017.28.1.217