DOI QR코드

DOI QR Code

Default Bayesian testing for the scale parameters in two parameter exponential distributions

  • Kang, Sang Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2013.06.08
  • Accepted : 2013.07.14
  • Published : 2013.07.31

Abstract

In this paper, we consider the problem of testing the equality of the scale parameters in two parameter exponential distributions. We propose Bayesian testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Thus, we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Keywords

References

  1. Arnold, B. C. (1970). Inadmissibility of the usual scale estimate for a shifted exponential distribution. Journal of the American Statistical Association, 65, 1260-1264. https://doi.org/10.1080/01621459.1970.10481162
  2. Bain, L. J. (1978). Statistical analysis of reliability and life testing. Marcel Dekker, New York.
  3. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  4. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  5. Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
  6. Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: the median intrinsic Bayes factor. Sankya B, 60, 1-18.
  7. Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 38, edited by P. Lahiri, Beachwood, Ohio, 135-207.
  8. Bobotas, P. and Kourouklis, S. (2011). Improved estimation of the scale parameter, the hazard rate parameter and the ratio of the scale parameters in exponential distributions: An integrated approach. Journal of Statistical Planning and Inference, 141, 2399-2416. https://doi.org/10.1016/j.jspi.2011.01.025
  9. Brewster, J. F. (1974). Alternative estimators for the scale parameter of the exponential distribution with unknown location. The Annals of Statistics, 2, 21-38. https://doi.org/10.1214/aos/1176342610
  10. Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test, 6, 159-186. https://doi.org/10.1007/BF02564432
  11. Johnson, N. L. and Kotz, S. (1970). Continuous univariate distributions, Vol. 2, Wiley, New York.
  12. Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Reference priors for the location parameter in the exponential distribution. Journal of Korean Data & Information Science Society, 19, 1409-1418.
  13. Kang, S. G., Kim, D. H. and Lee, W. D. (2011). Default Bayesian testing for the bivariate normal correlation coefficient. Journal of Korean Data & Information Science Society, 22, 1007-1016.
  14. Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Default Bayesian testing on the common mean of several normal distributions. Journal of the Korean Data & Information Science Society, 23, 605-616. https://doi.org/10.7465/jkdi.2012.23.3.605
  15. Kubokawa, T. (1994). A unified approach to improving equivariant estimators. The Annals of Statistics, 22, 290-299. https://doi.org/10.1214/aos/1176325369
  16. Lawless, J. F. and Singhal, K. (1980). Analysis of data from life-test experiments under an exponential model. Naval Research Logistics Quarterly, 27, 323-334. https://doi.org/10.1002/nav.3800270215
  17. Madi, M. (2008). Improved estimation of an exponential scale ratio based on records. Statistics and Probability Letters, 78, 165-172. https://doi.org/10.1016/j.spl.2007.05.013
  18. Madi, M. and Tsui, K. W. (1990). Estimation of the ratio of the scale parameters of two exponential distribution with unknown location parameters. Annals of the Institute of Statistical Mathematics, 42, 77-87. https://doi.org/10.1007/BF00050780
  19. O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
  20. O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
  21. Petropoulos, C. and Kourouklis, S. (2002). A class of improved estimators for the scale parameter of an exponential distribution with unknown location. Communications in Statistics-Theory and Methods, 31, 325-335. https://doi.org/10.1081/STA-120002851
  22. Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
  23. Wu, S. F. and Wu, C. C. (2005). Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity. Journal of Statistical Planning and Inference, 134, 392-408. https://doi.org/10.1016/j.jspi.2004.04.015
  24. Zelen, M. (1966). Application of exponential models to problems in cancer research. Journal of Royal Statistical Society A, 129, 368-398. https://doi.org/10.2307/2343503
  25. Zidek, J. V. (1973). Estimating the scale parameter of the exponential distribution with unknown location. The Annals of Statistics, 1, 264-278. https://doi.org/10.1214/aos/1176342364

Cited by

  1. Default Bayesian testing for scale parameters in the log-logistic distributions vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1501
  2. Bayesian testing for the homogeneity of the shape parameters of several inverse Gaussian distributions vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.835
  3. Default Bayesian one sided testing for the shape parameter in the log-logistic distribution vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1583
  4. Default Bayesian testing equality of scale parameters in several inverse Gaussian distributions vol.26, pp.3, 2015, https://doi.org/10.7465/jkdi.2015.26.3.739
  5. Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1569
  6. Objective Bayesian multiple hypothesis testing for the shape parameter of generalized exponential distribution vol.28, pp.1, 2013, https://doi.org/10.7465/jkdi.2017.28.1.217