References
-
Abdel-Hameed, M. (2000). Optimal control of a dam using
$P_{{\lambda},{\tau}}^{M}$ policies and penalty cost when the input process is a compound Poisson process with positive drift. Journal of Applied Probability, 37, 408-416. https://doi.org/10.1239/jap/1014842546 -
Bae, J., Kim, S. and Lee, E. Y. (2002). A
$P_{{\lambda},{\tau}}^{M}$ -policy for an M/G/1 queueing system. Applied Mathematical Modelling, 26, 929-939. https://doi.org/10.1016/S0307-904X(02)00045-8 -
Bae, J., Kim, S. and Lee, E. Y. (2003). Average cost under the
$P_{{\lambda},{\tau}}^{M}$ policy in a finite dam with compound Poisson inputs. Journal of Applied Probability, 40, 519-526. https://doi.org/10.1239/jap/1053003561 - Bar-Lev, S. K. and Perry, D. (1993). Two-stage release rule procedure in a regenerative dam. Probability in the Engineering and Informational Sciences, 7, 571-588. https://doi.org/10.1017/S0269964800003144
- Cohen, J. W. (1977). On up- and downcrossings. Journal of Applied Probability, 14, 405-410. https://doi.org/10.2307/3213014
- Faddy, M. J. (1974). Optimal control of finite dams: Discrete(2-stage) output procedure. Journal of Applied Probability, 11, 111-121. https://doi.org/10.2307/3212588
- Kim, M. H., Baek, J. S., Choi, S. K. and Lee, E. Y. (2011). An optimal policy for an infinite dam with exponential inputs of water. Journal of the Korean Data & Information Science Society, 22, 1089-1096.
-
Kim, J., Bae, J. and Lee, E. Y. (2006). An optimal
$P_{{\lambda},{\tau}}^{M}$ -service policy for an M/G/1 queueing system. Applied Mathematical Modelling, 30, 38-48. https://doi.org/10.1016/j.apm.2005.03.007 - Lee, E. Y. (2008). A new approach to an inventory with constant demand. Journal of the Korean Data & Information Science Society, 19, 1345-1352.
- Lee, J. and Kim, J. (2006). A workload-dependent M/G/1 queue under a two-stage service policy. Operations Research Letters, 34, 531-538. https://doi.org/10.1016/j.orl.2005.08.002
- Yeh, L. (1985). Optimal control of a finite dam: Average-cost case. Journal of Applied Probability, 22, 480-484. https://doi.org/10.2307/3213793