• Title/Summary/Keyword: damping plate

Search Result 296, Processing Time 0.028 seconds

Effect of Normal and Shear Strains in Core Material on Vibrational Characteristics of Aluminum Honeycomb Core Sandwich Plate (심재의 수직 및 전단 변형을 고려한 알루미늄 하니컴코아 샌드위치 평판의 진동특성 해석)

  • 손충열;김익태;변효인
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.89-94
    • /
    • 2000
  • Because the structural elements used in the automobile, astronautic and ship industries are put in dynamic loading environments, much interest is given to the damping of the structural elements, as well as high flexural rigidity and strength per density. Therefore, in this study, the structural damping value of the aluminum honeycomb sandwich plate(AHCP) has been experimentally extracted, and directly applied to the finite element, for the dynamic analysis of the plate considering the structural damping. The analysis results of this theory was compared with the results of the actual modal analysis method. It was observable that the two analyses concurred, establishing the structural damping and analysis method of the AHSP.

  • PDF

Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test (횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가)

  • Cho, Sung Gook;So, Gi Hwan;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

Vibration Characteristics of the Floor Structures inserted with Damping Materials (제진재가 삽입된 바닥 구조의 진동특성)

  • Jeong, Young;Yoo, Seung-Yub;Jeon, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.377-380
    • /
    • 2005
  • Damping materials encompass a broad range of materials, including, but not limits to, pressure sensitive adhesives, epoxies, rubbers, foams, thermoplastics, enamels and mastics. Their common characteristic is that their modulus is represented by a complex quantity, possessing both a stored and dissipative energy component. Loss factor of damping material analyzed more than 2 times than rubber to 1.5 $\sim$ 2.3, could know that Damping layer has excellent attenuation performance in side of vibration reduction. Measurements of vibration using accelerometers by adhesion of Damping layer, square Plate by Separation of Damping layer is less binding of Damping layer, analyzed low loss factor and Natural Frequency by free Vibration of Square Plate.

  • PDF

Analytical and Experimental Study on the Damping of Vibrating Layered Plates Including the Effects of Shear and Thickness Deformation of the Adhesive Layer (접착제층의 전단과 법선변형 효과를 고려한 적층판의 진동감쇠특성 연구)

  • 김재호;박태학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1244-1254
    • /
    • 1992
  • This paper investigates the vibrational damping characteristics of laminated plates composed of elastic, viscoelastic and elastic layers by theoretical and experimental methods. Laminated plates are in cylindrical bending and visco-elastic adhesive layer is assumed as the visco-elastic spring which takes damping effect through both shear and normal deformations. Governing equations oof laminated plates are derived in the form of simultaneous first order differential equations, which account for the longitudinal displacements, rotary inertia and shear deformations of elastic base plate and elastic constraining plate. The numerical calculations of the equations are illustrated by the applications to the cantilever beam in transverse vibration. The results of the solutions agree well with the experimental measurements in general. The damping effects due to the shear and thickness deformations in the adhesives are analyzed and it is shown that for thicker adhesives, the damping effect due to thickness deformation becomes significant and for thinner adhesives, due to shear deformation.

Conceptual Design of Motion Reduction Device for Floating Wave-Offshore Wind Hybrid Power Generation Platform (부유식 파력-해상풍력 복합발전 플랫폼의 운동저감장치 개념설계)

  • Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • The present study deals with the conceptual design of a motion reduction device for a floating wave-offshore wind hybrid power generation platform. A damping plate attached to the bottom of a column of a large semi-submersible is introduced to reduce the motion of the platform. Performance analyses on various shapes and configurations of damping plates were performed using the potential flow solver, and the appropriate configuration and size of the damping plate were selected based on the numerical results. In order to see the effect of viscous damping, a small scale model test was performed in a 2D wave flume. The performances of five different damping plates were measured and discussed based on the results of free decay tests and regular wave tests.

Analysis of Free Vibration and Damping Characteristics of a Composite Plate by Using Modified 3-Dimensional 16-Node Elements (수정된 3차원 16절점 요소에 의한 복합재 판의 자유진동 및 감쇠특성 해석)

  • 윤태혁;김상엽;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.990-1004
    • /
    • 1995
  • A modified 16-node element for composite plate has been proposed and compared with the 20-node element to check the validity of it. The fields of numerical inspection include mode analysis and specific damping analysis. By symetrizing the conventional unsymmetric damping matrix in the analysis of specific damping capacity, we could compute the specific damping capacity and make a program, effectively. In addition, we could predict the errors caused by reduction of integration order in thickness direction depending upon the number of layers.

Placement of passive Constrained Layer Damping for Vibration Control of Smart Plate (지능판의 진동제어를 위한 수동구속감쇠의 위치 설정)

  • Kang, Yong-Kyu;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.12-16
    • /
    • 2002
  • Dynamic characteristics of smart laminated composite plates with passive constrained layer damping have been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated plates. The damping ratio and modal damping of the first bending and torsional modes are calculated by means of iterative complex eigensolution method. The structural damping index(SDI) is introduced to determine the optimum placement of viscoelastic patch. This paper addresses a design strategy of laminated composite plate under vibrations.

  • PDF

Hydrodynamic Response of Spar with Single and Double Heave Plates in Regular Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.188-208
    • /
    • 2013
  • The motion response of floating structures should be adequately low to permit the operation of rigid risers along with dry well heads. Though Spar platforms have low heave responses under lower sea state, could become unacceptable in near resonance region of wave periods. Hence the hydrodynamic response, heave in particular, must be examined to ensure that it is minimized. To reduce heave motions, external damping devices are introduced and one such effective damping device is heave plate. Addition of heave plate can provide additional viscous damping and additional added mass in the heave direction which influence the heave motion. The present study focuses on the influence of heave plate on the hydrodynamic responses of Classic Spar in regular waves. The experimental investigation has been carried out on a 1:100 scale model of Spar with single and double heave plates in regular waves. Numerical investigation has been carried out to derive the hydrodynamic responses using ANSYS AQWA. The experimental results were compared with those obtained from numerical simulation and found to be in good agreement. The influence of disk diameter ratio, wave steepness, pretension in the mooring line and relative spacing between the plates on the hydrodynamic responses of Spar are evaluated and presented.

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.