DOI QR코드

DOI QR Code

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Received : 2013.01.15
  • Accepted : 2013.07.05
  • Published : 2013.11.25

Abstract

To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

Keywords

References

  1. Alkhatib, R. and Golnaraghi, M.F. (2003), "Active structural vibration control: a review", Shock Vib., 35(5), 367-383. https://doi.org/10.1177/05831024030355002
  2. Berger, W. (2011), Aktive Schwingungstilgung von Platten mit elektromagnetischen und piezoelektrischen Aktoren und Sensoren, Diploma-Theses, Linz, Johannes Kepler University.
  3. Bonet, J. and Wood, R.D. (2008), Nonlinear continuum mechanics for finite element analysis 2nd Ed., Cambridge, University Press.
  4. Bruant, I. and Proslier, L. (2005), "Optimal location of actuators and sensors in active vibration control", J. Intel. Mat. Syst. Str., 16, 197-206. https://doi.org/10.1177/1045389X05047989
  5. Crawley, E.F. (1994), "Intelligent Structures for Aerospace: A Technology Overview and Assessment", AIAA J., 32(8), 1689-1699. https://doi.org/10.2514/3.12161
  6. Den Hartog, J.P. (1985), Mechanical vibrations, New York, Dover Publications.
  7. Deraemaeker, A. and Preumont, A. (2006), "Vibration based damage detection using large array sensors and spatial filters", Mech. Syst. Signal Pr., 20, 1615-1630. https://doi.org/10.1016/j.ymssp.2005.02.010
  8. Donoso, A. and Bellido, J.C. (2009), "Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile", Struct. Multidiscip. O., 38(4), 347-356. https://doi.org/10.1007/s00158-008-0279-7
  9. Dorf , R. and Bishop, R. (2005), Modern control systems 10th Ed., New York, PEARSON Prentice Hall.
  10. Fuller, C.R., Elliot, S.J. and Nelson, P. A. (1996), Active control of vibrations, San Diego, Academic Press.
  11. Gabbert, U. and Tzou, H.S. (2000), "Preface", Proceedings of the IUTAM-Symposium on Smart Structures and Structronic Systems, (Eds. U. Gabbert and H.S. Tzou ), Kluwer Dordrecht, September.
  12. Gattringer, H., Nader, M., Krommer, M. and Irschik, H. (2003), "Collocative PD control of circular plates with shaped piezoelectric actuators/sensors", J. Vib. Control, 9, 965-982. https://doi.org/10.1177/10775463030098004
  13. Gerstmayr, J., Nader, M. and Berger, W. (2011), Vorrichtung und Verfahren zur Reduktion einer Schwingung einer insbesondere transparenten Platte, Austria Patent AT4752011.
  14. Gupta, V., Sharma, M. and Thakur, N. (2010), "Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review", J. Intel. Mat. Syst. Str., 21, 1227-1243. https://doi.org/10.1177/1045389X10381659
  15. Hac, A. and Liu, L. (1993), "Sensor and actuator location in motion control of flexible structures", J. Sound Vib., 167, 239-261. https://doi.org/10.1006/jsvi.1993.1333
  16. Hagood, N.W. and Flotow, A. (1991), "Damping of structural vibrations with piezoelectric materials and passive electrical networks", J. Sound Vib., 146( 2), 243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  17. Hansen, C. and Snyder, S. (1997), Active control of noise and vibration, London, E & FN Spon.
  18. Herold, S. (2003), Simulation des dynamischen und akustischen Verhaltens aktiver Systeme im Zeitbereich, Phd Theses, Darmstadt: University of Darmstadt.
  19. Hwang, J.K., Choi, C.H., Song, C.K. and Lee, J.M. (1997), "Robust LQG control of an all-clamped thin plate with piezoelectric actuators/sensors", IEEE/ASME T. Mech., 2(3), 205-212. https://doi.org/10.1109/3516.622973
  20. Inman, D. (1997), "Active modal control for smart structures", Philos. T. R. Soc. A, 359(1778), 205-219.
  21. Irschik, H. and Ziegler, F. (1988), "Dynamics of linear elastic structures with selfstress: a unified treatment for linear and nonlinear problems", Zeitschrift fur Angewandte Mathematik und Mechanik, 68, 199-205. https://doi.org/10.1002/zamm.19880680602
  22. Irschik, H., Krommer, M., Belyaev, A.K. and Schlacher, K. (1998), "Shaping of piezoelectric sensors/actuators for vibrations of slender beams: coupled theory and inappropriate shape functions", J. Intel. Mat. Syst. Str., 9, 546-554. https://doi.org/10.1177/1045389X9800900706
  23. Irschik, H., Krommer, M. and Pichler, U. (1999), "Shaping of distributed piezoelectric sensors for flexural vibrations of smart beams", Proceedings of the SPIE's 6th Annual International Symposium on Smart Structures and Materials, (Ed.V.V. Varadan), Mathematics and Control in Smart Structures, March .
  24. Irschik, H. (2002), "A review on static and dynamic shape control of structures by piezoelectric actuation", Eng. Struct., 24, 5-11. https://doi.org/10.1016/S0141-0296(01)00081-5
  25. Irschik, H., Krommer, M. and Pichler, U. (2003), "Dynamic shape control of beam - type structures by piezoelectric actuation and sensing", Int. J. Appl. Electrom., 17 (1-3), 251-258.
  26. Kirchhoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", Zeitschrift fur Reine und Angewandte Mathematik, 40, 51-58.
  27. Krommer, M. (2003), "The significance of non-local constitutive relations for composite thin plates including piezoelastic layers with prescribed electric charge", Smart Mater. Struct., 12, 318-330. https://doi.org/10.1088/0964-1726/12/3/302
  28. Krommer, M. and Varadan, V. (2005), "Control of bending vibrations within subdomains of thin plates - part I: theory and exact solution", J. Appl. Mech. - T ASME, 72 (3), 432-444. https://doi.org/10.1115/1.1839185
  29. Krommer, M. and Irschik, H. (2007), "Sensor and actuator design for displacement control of continuous systems", Smart Struct. Syst., 3(2), 147-172. https://doi.org/10.12989/sss.2007.3.2.147
  30. Krommer, M., Zellhofer, M. and Heilbrunner, K.H. (2009), "Strain-type sensor networks for structural monitoring of beam-type structures", J. Intel. Mat. Syst. Str., 20, 1875-1888. https://doi.org/10.1177/1045389X08099467
  31. Kugi, A. (2001), Non - linear control based on physical models, London, Springer.
  32. Lee, C.K. and Moon, F.C. (1990), "Modal sensors/actuators", J. Appl. Mech. - T ASME, 57, 434-441. https://doi.org/10.1115/1.2892008
  33. Liu, S.C., Tomizuka, M. and Ulsoy, G. (2005), "Challenges and opportunities in the engineering of intelligent structures", Smart Struct. Syst., 1(1), 1-12. https://doi.org/10.12989/sss.2005.1.1.001
  34. Lunze, J. (1996), Regelungstechnik 1, Systemtheoretische Grundlagen Analyse und Entwurf einschleifiger Reglungen, Berlin, Springer.
  35. Lurie, A.I. (2002), Analytical mechanics, Berlin Heidelberg New York, Springer.
  36. Ma, K. (2003), "Adaptive non-linear control of a clamped rectangular plate with PZT patches", J. Sound Vib., 264, 835-850. https://doi.org/10.1016/S0022-460X(02)01220-8
  37. Moheimani, S.O.R. and Fleming, A. (2006), Piezoelectric transducers of vibration control and damping, London, Springer.
  38. Mura, T. (1987), Micromechanics of defects in solids 2nd Ed., Springer.
  39. Nader, M., Gattringer, H., Krommer, M. and Irschik, H. (2003), "Shape control of flexural vibrations of circular plates by shaped piezoelectric actuation", J. Vib. Acoust., 125(1), 88-94. https://doi.org/10.1115/1.1522418
  40. Nader, M. (2008), Compensation of vibrations in smart structures: shape control, experimental realization and feedback control, Linz, Trauner.
  41. Nemenyi, P. (1931), "Eigenspannungen und Eigenspannungsquellen", Zeitschrift fur Angewandte Mathematik und Mechanik, 11, 1-8. https://doi.org/10.1002/zamm.19310110101
  42. Nestorovic, T., Lefefre, J. and Gabbert, U. (2007), "Model-based active noise control of a piezoelectric structure", J. Mech., 26(2), 71-77.
  43. Niederberger, D. (2005), Smart damping materials using shunt control , PhD. Thesis, Zurich, ETH Zurich.
  44. Nyashin, Y., Lokhov, V. and Ziegler, F. (2005), "Decomposition method in linear elastic problems with eigenstrain", Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 85 (8), 557-570. https://doi.org/10.1002/zamm.200510202
  45. Preumont, A. (2002),Vibration control of active structures 2nd Ed., New York, Springer.
  46. Preumont, A., Francois, A., De Man, P. and Piefort, V. (2003), "Spatial filters in structural control", J. Sound Vib., 265, 61-79. https://doi.org/10.1016/S0022-460X(02)01440-2
  47. Preumont, A., Francois, A., De Man, P., Loix, N. and Henrioulle, K. (2005), "Distributed sensors with piezoelectric films in design of spatial filters for structural control", J. Sound Vib., 282, 701-712. https://doi.org/10.1016/j.jsv.2004.03.056
  48. Reissner, H. (1931), "Selbstspannungen elastischer Gebilde", Zeitschrift fur Angewandte Mathematik und Mechanik, 11, 59-70. https://doi.org/10.1002/zamm.19310110108
  49. Schoftner, J. and Irschik, H. (2009), "Passive damping and exact annihilation of vibrations of beams using shaped piezoelectric layers and tuned inductive networks", Smart Mater. Struct., 18(12), 1250081 - 1250089.
  50. Schoftner, J. and Krommer, M. (2012), "Single point vibration control for a passive piezoelectric Bernoulli-Euler beam subjected to spatially varying harmonic loads", Acta Mech., 223(8), 1983-1998. https://doi.org/10.1007/s00707-012-0686-0
  51. Selvadurai, A.P.S. (2000), Partial differential equations in mechanics 2, Berlin Heidelberg, Springer.
  52. Tani, J., Takagi, T. and Qiu, J. (1998), "Intelligent material systems: application of functional materials", Appl. Mech. Rev., 51, 505-521. https://doi.org/10.1115/1.3099019
  53. Trindade, M.A. and Benjeddou, A. (2009), "Effective electromechanical coupling coefficients of piezoelectric adaptive structures: critical evaluation and optimization", Mech. Adv. Mater. Str., 16( 3), 210-223. https://doi.org/10.1080/15376490902746863
  54. Tzou, H.S., Zhong, J.P. and Hollkamp, J.J. (1994), "Spatially distributed orthogonal piezoelectric shell actuators: theory and applications", J. Sound Vib., 177( 3), 363-378. https://doi.org/10.1006/jsvi.1994.1440
  55. Yu, Y., Zhang, X.N. and Xie, S.L. (2009), "Optimal shape control of a beam using piezoelectric actuators with low control voltage", Smart Mater. Struct., 18(9), 095005. https://doi.org/10.1088/0964-1726/18/9/095005
  56. Zehetner, Ch. and Irschik, H. (2005), "Displacement compensation of beam vibrations caused by rigid-body motions", Smart Mater. Struct., 14, 862-868. https://doi.org/10.1088/0964-1726/14/4/046
  57. Zenz, G. (2011), Shunt damping - Elektrische Netzwerke zur Schwingungsdampfung mit piezoelektrischen Sensoren/Aktoren, Linz, Trauner.

Cited by

  1. Modellierung, Simulation und Schwingungsreduktion dünner Schalen mit piezoelektrischen Wandlern vol.132, pp.8, 2015, https://doi.org/10.1007/s00502-015-0375-5
  2. Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.155
  3. Identification procedure in the modal control of a distributed elastic system vol.3, pp.2, 2017, https://doi.org/10.1016/j.spjpm.2017.06.004
  4. The study on piezoelectric transducers: theoretical analysis and experimental verification vol.15, pp.4, 2015, https://doi.org/10.12989/sss.2015.15.4.1063
  5. Active vibration control: considering effect of electric field on coefficients of PZT patches vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1091
  6. A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe vol.21, pp.12, 2014, https://doi.org/10.1002/stc.1652
  7. Stochastic micro-vibration response characteristics of a sandwich plate with MR visco-elastomer core and mass vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.141
  8. Displacement tracking of pre-deformed smart structures vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.139
  9. Experimental study of local and modal approaches to active vibration control of elastic systems vol.25, pp.2, 2018, https://doi.org/10.1002/stc.2105
  10. Mathematical Analysis of Piezoelectric Sandwich Torsion Transducers Based on thed36-Effect vol.22, pp.1-2, 2015, https://doi.org/10.1080/15376494.2014.907947
  11. Control-structure interaction in piezoelectric deformable mirrors for adaptive optics vol.21, pp.6, 2013, https://doi.org/10.12989/sss.2018.21.6.777
  12. Application of dithering control for the railway wheel squealing noise mitigation vol.23, pp.4, 2013, https://doi.org/10.12989/sss.2019.23.4.347