• Title/Summary/Keyword: daily streamflows

Search Result 28, Processing Time 0.03 seconds

Development of GRld-eased Soil MOsture Routing Model (GRISMORM) Applied to Bocheongchun Watershed (격자기반의 토양수분추적표형 개발 : 보청천 유역 사례연구)

  • 김성준;채효석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 1999
  • A GRId-based Soil MOsture Routing Model(GRISMORM) which predicts temporal variation and spatial distribution of water balance on a daily time step for each grid element of the watershed was developed. The model was programmed by C-language which aims for high flexibility to any kind of GIS softwares. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and generates daily or monthly spatial distribution map of water balance components within the watershed. The model was applied to Ipyunggyo watershed(75.6$km^2$) ; the part of Bocheongchun watershed. Predicted streamflows resulting from two years(95 and 96) daily data were compared with those observed at the watershed outlet. The results of temporal variation and spatial distribution of soil moisture are also presented by using GRASS.

  • PDF

A Feasibility Study on Supplying Stream Minimum Flow Using Detention Storage in Developing Planned District (단지계획지구 홍수저류지의 하천유지유량 공급방안 연구)

  • Noh Jaekyoung;Park Hyun-goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1219-1223
    • /
    • 2005
  • This study was accomplished to confirm the possibility of supplying stream minimum flow from detention storage which was determined to reduce peak flows of flood within developing planned district. The results analyzed was summarized as follows; Firstly, Sin-gil district situated in Ansan city was selected, of which watershed area has $0.56km^2$. And detention storage was determined to $5,370m^3$ from analyzing flood volume by the SCS unit hydrograph method. Secondly, using Visual Basic ver 6.0, a detention storage water balance model was developed, in which simulation was based on conditioning storage inflow and outflow according to streamflow volume or rate state. And streamflow was simulated using the DAWAST model. Thirdly, detention operation scenarios were consisted of the combinations with inflow referencing streamflow of 5mm/day, 10mm/day and outflow referencing streamflow of 1mm/day, 2mm/day. The developed detention storage water balance model was operated to simulate daily water storages of detention sized on flood by scenarios. Stream minimum flows were able to be supplied during 209 days to 237 days per a year, total volume of stream minimum flows supplied for this period was analyzed to reach 27 to $55\% of yearly streamflow volume. If inflow criteria of streamflows to detention was considered to be established on a theoretical condition, it is expected to supply stream minimum flows of 20 to $30\% of yearly streamflow from stream to detention. Also to maximize function of supplying urban stream minimum flow from detention storages, sewage waters within developing planned district have to be treated and entered to detention inflow together with streamflows to enrich function of detention planned to reduce flood volumes.

  • PDF

Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed (충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석)

  • Kim, Nam-Won;Shin, Ah-Hyun;Kim, Chul-Gyum
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

Impact of Climate Change on Yongdam Dam Basin (기후변화가 용담댐 유역의 유출에 미치는 영향)

  • Kim, Byung-Sik;Kim, Hung-Soo;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.185-193
    • /
    • 2004
  • The main purpose of this study is to investigate and evaluate the impact of climate change on the runoff and water resources of Yongdam basin. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONV GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about 7.6% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern.

Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series (일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석)

  • Kim, Byeong-Sik;Gang, Gyeong-Seok;Seo, Byeong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.265-279
    • /
    • 1999
  • In this study, one of the techniques on the extension of low flow series has been developed, in which the daily streamflows were simulated by the Tank model with the input of extended daily rainfall series which were stochastically generated by the Markov chain model. The annual lowest flow serried for each of the given durations were formulated form the simulated daily streamflow sequences. The frequency of the estimated annual lowest flow series was analyzed. The distribution types to be used for the frequency analysis were two-parameter and three-parameter log-normal distribution, two-parameter and three-parameter Gamma distribution, three-parameter log-Gamma distribution, Gumbel distribution, and Weibull distribution, of which parameters were estimated by the moment method and the maximum likelihood method. The goodness-of-fit test for probability distribution is evaluated by the Kolmogorov-Sminrov test. The fitted distribution function for each duration series is applied to frequency analysis for developing duration-low flow-frequency curves at Yongdam Dam station. It was shown that the purposed technique in this study is available to generate the daily streamflow series with fair accuracy and useful to determine the probabilistic low flow in the watersheds having the poor historic records of low flow series.

  • PDF

Simulation of Daily Streamflows by SWAT Based on GIS (GIS 기반의 SWAT 모형을 이용한 하천 유출량 모의)

  • Jang, Dae Won;Kim, Nam Won;Kim, Hung Soo;Seoh, Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.724-730
    • /
    • 2004
  • 본 연구에서는 GIS와 연계되는 SWAT 모형을 이용하여 소양강댐 유역의 일 유출량을 모의하였으며, 모형에서 제공하는 단일 지점을 이용하는 기본 방법과 다지점 강우를 이용하기 위한 방법으로 나누어 비교하였다. 모형의 민감도 분석을 통해 매개변수를 최적화 하였고, 잠재 증발산량을 산정하기 위하여 Penman-Monteith 방법을 이용하였다. 과거의 관측 수문곡선을 SWAT 모형에 의해 모의된 일 유출 수문곡선과 비교한 결과, 두 가지 방법 모두 총 유출체적은 물수지에 기본을 둔 모형의 특성상 잘 일치 하였다. 그러나 갈수기와 홍수기의 일 유출 수문곡선은 다지점의 강우자료를 이용한 경우가 더 적합함을 알 수 있었다. 또한 SWAT 모형이 장기 일 유출량 모의에 적용 가능함을 확인하였다.

  • PDF

Groundwater Recharge Assessment via Grid-based Soil Moisture Route Modeling (격자기반의 토양수분 추적에 의한 지하수함양량 추정기법 개발)

  • Kim, Seong-Jun;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.61-72
    • /
    • 2000
  • The purpose of this study is to improve the method of evaluating groundwater recharge by using grid-based soil moisture routing technique. A model which predicts temporal variation and spatial distribution of soil moisture on a daily time step was developed. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and can generate daily and monthly spatial distribution map of surface runoff, soil moisture content, evapotranspiration within the watershed. The model was applied to Ipyunggyo watershed($75.6\;\textrm{km}^2$) located in the upstream of Bocheongchun watershed. Seven maps; DEM(Digital Elevation Mode]), stream, flow path, soil, land use, Thiessen network and free groundwater level, were used for input data. Predicted streamflows resulting from two years (l995, 1996) daily data were compared with the observed values at the watershed outlet. The results of temporal variations and spatial distributions of soil moisture are presented by using GRASS GIS. As a final result, the monthly predicted groundwater recharge was presented.sented.

  • PDF

Operation rule curve for supplying urban instream flow from reservoir (도시 하천유지유량 공급의 저수지 운영 방법)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.163-172
    • /
    • 2011
  • To provide the operation rule curve for suppling instream flow to urban stream from reservoir, the Soho reservoir with watershed area of 7.4 $km^2$ and total water storage of 2.58 $Mm^3$ was planned at the headwaters of the Daejeoncheon. Daily streamflow was simulated and using the simulated streamflow and desired instream flow, the operation rule curve by Senga method was drawn and evaluated through reservoir operation. Senga method is derived by accumulating the differences between streamflow and desired instream flow adversely. Water storages were simulated on a daily basis to supply urban instream flow from Soho reservoir, but the amount of supplying instream flow to urban stream was not nearly increased comparing with that of normal operation that does not used the rule curve. Thereafter the new simulation-based operation rule curve was derived and applied to supply instream flow from Soho reservoir. In normal operation, the amount of instream flow was shown to 15,000 $m^3$/d, but it was increased to 27,700 $m^3$/d in withdrawal limited operation using the new derived rule curve, in which the applicability of this rule curve was proved. Also comparing with the flow duration curves at station just before urban Daejeoncheon stream without and with upstream Soho reservoir, the 95th flow was decreased from 1.64 mm/d to 1.51 mm/d, and the 355th flow was increased from 0.17 mm/d to 0.30 mm/d. Monthly streamflows during October to March were increased from 10.6~24.1 mm to 24.1~34.0 mm with the increasing rate of 141~227%.

Effect of Yongdam Dam Operation to Level of Reference Flows Downstream (용담댐 운영이 하류 기준유량 설정에 미치는 영향)

  • Noh, Jae-Kyoung;Yoo, Jae-Min;Oh, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1772-1776
    • /
    • 2006
  • The Ministry of Environment is determining reference flows and goal water qualities in many stations over all around riverbasin to control TMDL. Reference flow is now defined to 10 years averaged 275th minimum flow$(Q_{275})$. Dam operation takes direct effect on flows downstream. The Yongdam mutipurposed dam was constructed in 2002 and TMDL managing stations between the Daecheong dam and the Yongdam dam are the Geumbon B, C, D, E, and F in main stream of the Geum river. Geumbon F is the Daecheong dam site. Observed flows are ideal to be used to set reference flows, but simulated flows are more practical to be used to set reference flows from the cause of the Yongdam dam's operation. A system for simulating daily storages of the Yongdam dam was constructed and the DAWAST model was selected to simulate daily streamflows. Analysis period was selected for 10 years from 1996 to 2005. Scenario was set as follows; Firstly, observed outflows from the Yongdam dam are used from 2002 to 2005 and the Yongdam dam does not exist from 1995 to 2001. Secondly, the Yongdam dam existed also from 1995 to 2001 and simulated outflows from the Yongdam dam are used from 1996 to 2005 with provision of constant outflow of $7.0m^3/s$ and water supply to the Jeonju region outsided watershed of $900,000m^3/day$. In case of scenario 1 reference flows at the Geumbon B, C, D, E, F are 4.52, 6.69, 7.96, 11.17, and $13.21m^3/s$, respectively. And in case of scenario 2 reference flows at the Geumbon B, C, D, E, F are 6.27, 8.48, 9.58, 12.73, and $15.12m^3/s$, respectively.

  • PDF

Estimation of Runoff Curve Number for Chungju Dam Watershed Using SWAT (SWAT을 이용한 충주댐 유역의 유출곡선지수 산정 방안)

  • Kim, Nam-Won;Lee, Jin-Won;Lee, Jeong-Woo;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1231-1244
    • /
    • 2008
  • The objective of this study is to present a methodology for estimating runoff curve number(CN) using SWAT model which is capable of reflecting watershed heterogeneity such as climate condition, land use, soil type. The proposed CN estimation method is based on the asymptotic CN method and particularly, it uses surface flow data simulated by SWAT. This method has advantages to estimate spatial CN values according to subbasin division and to reflect watershed characteristics because the calibration process has been made by matching the measured and simulated streamflows. Furthermore, the method is not sensitive to rainfall-runoff data since CN estimation is on a daily basis. The SWAT based CN estimation method is applied to Chungju dam watershed. The regression equation of the estimated CN that exponentially decays with the increase of rainfall is presented.