• Title/Summary/Keyword: cycle graph

Search Result 138, Processing Time 0.023 seconds

On the Basis Number of the Semi-Strong Product of Bipartite Graphs with Cycles

  • Jaradat, M.M.M.;Alzoubi, Maref Y.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • A basis of the cycle space C (G) is d-fold if each edge occurs in at most d cycles of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if $b(G)\;{\leq}\;2$. Schmeichel showed that for $n\;{\geq}\;5,\;b(K_{n}\;{\bullet}\;P_{2})\;{\leq}\;1\;+\;b(K_n)$. Ali proved that for n, $m\;{\geq}\;5,\;b(K_n\;{\bullet}\;K_m)\;{\leq}\;3\;+\;b(K_n)\;+\;b(K_m)$. In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.

  • PDF

THE CHROMATIC NUMBER OF SOME PERMUTATION GRAPHS OVER SOME GRAPHS

  • LEE, JAEUN;SHIN, YOUNG-HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.551-559
    • /
    • 2005
  • A permutation graph over a graph G is a generalization of both a graph bundle and a graph covering over G. In this paper, we characterize the F-permutation graphs over a graph whose chromatic numbers are 2. We determine the chromatic numbers of $C_n$-permutation graphs over a tree and the $K_m$-permutation graphs over a cycle.

  • PDF

Emotion Graph Models for Bipedal Walk Cycle Animation

  • Rahman, Ayub bin Abdul;Aziz, Normaziah Abdul;Hamzah, Syarqawi
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2016
  • Technology in the animation industry has evolved significantly over the past decade. The tools to create animation are becoming more intuitive to use. Animators now spend more time on the artistic quality of their work than wasting time figuring out how to use the software that they rely on. However, one particular tool that is still unintuitive for animators is the motion graph editor. A motion graph editor is a tool to manipulate the interpolation of the movements generated by the software. Although the motion graph editor contains a lot of options to control the outcome of the animation, the emotional rhythm of the movements desired by the animator still depends on the animator's skill, which requires a very steep learning curve. More often than not, animators had to resort to trial and error methods to achieve good results. This inevitably leads to slow productivity, susceptible to mistakes, and waste of resources. This research will study the connection between the motion graph profile and the emotions they portray in movements. The findings will hopefully be able to provide animators reference materials to achieve the emotional animation they need with less effort.

k-PRIME CORDIAL GRAPHS

  • PONRAJ, R.;SINGH, RAJPAL;KALA, R.;NARAYANAN, S. SATHISH
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.227-237
    • /
    • 2016
  • In this paper we introduce a new graph labeling called k-prime cordial labeling. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate the k-prime cordial labeling behavior of a star and we have proved that every graph is a subgraph of a k-prime cordial graph. Also we investigate the 3-prime cordial labeling behavior of path, cycle, complete graph, wheel, comb and some more standard graphs.

A SUFFICIENT CONDITION FOR ACYCLIC 5-CHOOSABILITY OF PLANAR GRAPHS WITHOUT 5-CYCLES

  • Sun, Lin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.415-430
    • /
    • 2018
  • A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment $L=\{L(v):v{\in}V(G)\}$, there exists an acyclic coloring ${\phi}$ of G such that ${\phi}(v){\in}L(v)$ for all $v{\in}V(G)$ A graph G is acyclically k-choosable if G is acyclically L-list colorable for any list assignment with $L(v){\geq}k$ for all $v{\in}V(G)$. Let G be a planar graph without 5-cycles and adjacent 4-cycles. In this article, we prove that G is acyclically 5-choosable if every vertex v in G is incident with at most one i-cycle, $i {\in}\{6,7\}$.

Proposal of Minimum Spanning Tree Algorithm using 2-Edges Connected Grap (2-간선 연결 그래프를 사용한 최소신장트리 알고리즘 제안)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • This paper suggests a fast minimum spanning tree algorithm which simplify the original graph to 2-edge connected graph, and using the cycling property. Borůvka algorithm firstly gets the partial spanning tree using cycle property for one-edge connected graph that selects the only one minimum weighted edge (e) per vertex (v). Additionally, that selects minimum weighted edge between partial spanning trees using cut property. Kruskal algorithm uses cut property for ascending ordered of all edges. Reverse-delete algorithm uses cycle property for descending ordered of all edges. Borůvka and Kruskal algorithms always perform |e| times for all edges. The proposed algorithm obtains 2-edge connected graph that selects 2 minimum weighted edges for each vertex firstly. Secondly, we use cycle property for 2-edges connected graph, and stop the algorithm until |e|=|v|-1 For actual 10 benchmark data, The proposed algorithm can be get the minimum spanning trees. Also, this algorithm reduces 60% of the trial number than Borůvka, Kruskal and Reverse-delete algorithms.

Cycle Extendability of Torus Sub-Graphs in the Enhanced Pyramid Network (개선된 피라미드 네트워크에서 토러스 부그래프의 사이클 확장성)

  • Chang, Jung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1183-1193
    • /
    • 2010
  • The pyramid graph is well known in parallel processing as a interconnection network topology based on regular square mesh and tree architectures. The enhanced pyramid graph is an alternative architecture by exchanging mesh into the corresponding torus on the base for upgrading performance than the pyramid. In this paper, we adopt a strategy of classification into two disjoint groups of edges in regular square torus as a basic sub-graph constituting of each layer in the enhanced pyramid graph. Edge set in the torus graph is considered as two disjoint sub-sets called NPC(represents candidate edge for neighbor-parent) and SPC(represents candidate edge for shared-parent) whether the parents vertices adjacent to two end vertices of the corresponding edge have a relation of neighbor or sharing in the upper layer of the enhanced pyramid graph. In addition, we also introduce a notion of shrink graph to focus only on the NPC-edges by hiding SPC-edges within the shrunk super-vertex on the resulting shrink graph. In this paper, we analyze that the lower and upper bounds on the number of NPC-edges in a Hamiltonian cycle constructed on $2^n{\times}2^n$ torus is $2^{2n-2}$ and $3{\cdot}2^{2n-2}$ respectively. By expanding this result into the enhanced pyramid graph, we also prove that the maximum number of NPC-edges containable in a Hamiltonian cycle is $4^{n-1}$-2n+1 in the n-dimensional enhanced pyramid.

An Eulerian Cycle Algorithm for Chinese Postman Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.47-52
    • /
    • 2016
  • This paper introduces an algorithm to construct an Eulerian cycle for Chinese postman problem. The Eulerian cycle is formed only when all vertices in the graph have an even degree. Among available algorithms to the Eulerian cycle problem, Edmonds-Johnson's stands out as the most efficient of its kind. This algorithm constructs a complete graph composed of shortest path between odd-degree vertices and derives the Eulerian cycle through minimum-weight complete matching method, thus running in $O({\mid}V{\mid}^3)$. On the contrary, the algorithm proposed in this paper selects minimum weight edge from edges incidental to each vertex and derives the minimum spanning tree (MST) so as to finally obtain the shortest-path edge of odd-degree vertices. The algorithm not only runs in simple linear time complexity $O({\mid}V{\mid}log{\mid}V{\mid})$ but also obtains the optimal Eulerian cycle, as the implementation results on 4 different graphs concur.

A DIFFERENCE SET METHOD FOR CIRCULANT DECOMPOSITIONS OF COMPLETE PARTITE GRAPHS INTO GREGARIOUS 4-CYCLES

  • Kim, Eun-Kyung;Cho, Young-Min;Cho, Jung-Rae
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.655-670
    • /
    • 2010
  • The complete multipartite graph $K_{n(m)}$ with n $ {\geq}$ 4 partite sets of size m is shown to have a decomposition into 4-cycles in such a way that vertices of each cycle belong to distinct partite sets of $K_{n(m)}$, if 4 divides the number of edges. Such cycles are called gregarious, and were introduced by Billington and Hoffman ([2]) and redefined in [3]. We independently came up with the result of [3] by using a difference set method, and improved the result so that the composition is circulant, in the sense that it is invariant under the cyclic permutation of partite sets. The composition is then used to construct gregarious 4-cycle decompositions when one partite set of the graph has different cardinality than that of others. Some results on joins of decomposable complete multipartite graphs are also presented.

PROJECTIONS OF BOUQUET GRAPH WITH TWO CYCLES

  • Huh, Young-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1341-1360
    • /
    • 2008
  • In this paper we investigate the projections of bouquet graph B with two cycles. A projection of B is said to be trivial if only trivial embeddings are obtained from the projection. It is shown that, to cover all nontrivial projections of B, at least three embeddings of B are needed. We also show that a nontrivial projection of B is covered by one of some two embeddings if the image of each cycle has at most one self-crossing.