• 제목/요약/키워드: current sensing

검색결과 1,083건 처리시간 0.03초

Through-field Investigation of Stray Light for the Fore-optics of an Airborne Hyperspectral Imager

  • Cha, Jae Deok;Lee, Jun Ho;Kim, Seo Hyun;Jung, Do Hwan;Kim, Young Soo;Jeong, Yumee
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.313-322
    • /
    • 2022
  • Remote-sensing optical payloads, especially hyperspectral imagers, have particular issues with stray light because they often encounter high-contrast target/background conditions, such as sun glint. While developing an optical payload, we usually apply several stray-light analysis methods, including forward and backward analyses, separately or in combination, to support lens design and optomechanical design. In addition, we often characterize the stray-light response over a full field to support calibration, or when developing an algorithm to correct stray-light errors. For this purpose, we usually use forward analysis across the entire field, but this requires a tremendous amount of computational time. In this paper, we propose a sequence of forward-backward-forward analyses to more effectively investigate the through-field response of stray light, utilizing the combined advantages of the individual methods. The application is an airborne hyperspectral imager for creating hyperspectral maps from 900 to 1700 nm in a 5-nm-continuous band. With the proposed method, we have investigated the through-field response of stray light to an effective accuracy of 0.1°, while reducing computation time to 1/17th of that for a conventional, forward-only stray-light analysis.

Midinfrared Refractive-index Sensor with High Sensitivity Based on an Optimized Photonic Crystal Coupled-cavity Waveguide

  • Han, Shengkang;Wu, Hong;Zhang, Hua;Yang, Zhihong
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.444-449
    • /
    • 2021
  • A photonic crystal coupled-cavity waveguide created on silicon-on-insulator is designed to act as a refractive-index-sensing device at midinfrared wavelengths around 4 ㎛. To realize high sensitivity, effort is made to engineer the structural parameters to obtain strong modal confinement, which can enhance the interaction between the resonance modes and the analyzed sample. By adjusting some parameters, including the shape of the cavity, the width of the coupling cavity, and the size of the surrounding dielectric columns, a high-sensitivity refractive-index sensor based on the optimized photonic crystal coupled-cavity waveguide is proposed, and a sensitivity of approximately 2620 nm/RIU obtained. When an analyte is measured in the range of 1.0-1.4, the sensor can always maintain a high sensitivity of greater than 2400 nm/RIU. This work demonstrates the viability of high-sensitivity photonic crystal waveguide devices in the midinfrared band.

Analysis of International Research Trends on Metaverse

  • Mina, Shim
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.453-459
    • /
    • 2022
  • This study attempted to explore the realization and research direction of a successful metaverse environment in the future by analyzing international research trends of the metaverse using topic modeling. A total of 208 papers among WoS and ScienceDirect papers using metaverse as keywords were selected, and quantitative frequency analysis and topic modeling were performed. As a result, it was confirmed that research has rapidly increased after 2022. The main keywords of the research topics were 'second', 'life', 'learning', 'reality', 'metaverse', 'virtual', 'blockchain', 'nft', 'medical', 'avatar', etc. The topic keywords 'Second life & Education' and 'Virtual Reality & Medical' accounted for a large proportion of 57%, followed by 'Blockchain & Cryptocurrency', 'Avatar & Interaction', and 'Sensing and Device'. As a result of semantic analysis, current metaverse research is focused on application and utilization, and research on underlying technologies and devices is also active. Therefore, it is necessary to identify the commonalities and differences between domestic and foreign studies, and to study the application method considering the domestic environment. In addition, new jurisprudence research is more necessary along with predicting new problems. It is expected that the results of study will provide the right research direction for domestic researchers in the era of digital transformation and contribute to the realization of a digital society.

Hypothetical protein predicted to be tumor suppressor: a protein functional analysis

  • Kader, Md. Abdul;Ahammed, Akash;Khan, Md. Sharif;Ashik, Sheikh Abdullah Al;Islam, Md. Shariful;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.6.1-6.15
    • /
    • 2022
  • Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei

  • Pravin Kumran Nyanasegran;Sheila Nathan;Mohd Firdaus-Raih;Nor Azlan Nor Muhammad;Chyan Leong Ng
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.15-27
    • /
    • 2023
  • The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.

Fabrication of High-purity Rb Vapor Cell for Electric Field Sensing

  • Jae-Keun Yoo;Deok-Young Lee;Sin Hyuk Yim;Hyun-Gue Hong;Sun Do Lim;Seung Kwan Kim;Young-Pyo Hong;No-Weon Kang;In-Ho Bae
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.207-212
    • /
    • 2023
  • In this paper, we introduce our system for manufacturing a Rb vapor cell and describe its fabrication process in a sequence of removing impurities, cold trapping, and sealing off. Saturated absorption spectroscopy was performed to verify the quality of our cell by comparing it to that of a commercial one. By using the lab-fabricated Rb vapor cell, we observed electromagnetically induced transparency in a ladder-type system corresponding to the 5S1/2-5P3/2-28D5/2 transition of the 85Rb atom. A highly excited Rydberg atomic system was prepared using two counter-propagating external cavity diode lasers with wavelengths of 780 nm and 480 nm. We also observed the Autler-Townes splitting signal while a radio-frequency source around 100 GHz incidents into the Rydberg atomic medium.

확장성 신뢰성 갖춘 양자 컴퓨터를 위한 CMOS 기반 제어 및 센싱 회로 기술 (CMOS Interconnect Electronics Architecture for Reliable and Scalable Quantum Computer)

  • 김주성;한정환;남재원;조건희
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.12-18
    • /
    • 2023
  • 각각의 큐빗(qubit)을 개별적으로 상온의 제어 회로에 연결하는 현재의 회로 기술은 양자 컴퓨터의 확장성, 신뢰성을 갖추는 데 있어 한계를 가지고 있으며, 집적도 측면에서 극저온의 CMOS 기술 기반 인터커넥트 회로 기술을 통해 기존 기술 대비 인터커넥트의 복잡도, 시스템 안정도 및 사이즈, 그리고 가격 경쟁력을 획기적으로 개선할 수 있을 것으로 기대되고 있다. 외부의 전기적 자극에 민감하며 양자 상태를 일정 시간 이상 유지할 수 없는 큐빗의 특성으로 인한 문제를 극복하고, 확장성과 신뢰성을 양자 컴퓨터 실현을 위한 CMOS 기술 기반 집적화된 센싱 및 제어 회로 기술에 대해 소개한다.

쑥을 이용한 과산화수소 정량 바이오센서의 전기화학적 성질 (Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide)

  • 이범규;박성우;윤길중
    • 분석과학
    • /
    • 제19권1호
    • /
    • pp.58-64
    • /
    • 2006
  • 탄소반죽에 쑥조직을 혼입시켜 과산화수소 정량 바이오센서를 제작하고 그것의 전기화학적 성질을 조사하였다. 다른 생체조직을 이용하여 제작한 센서와 비교할 때, 생촉매 안정성이 뛰어났으며, 보다 큰 감응신호를 보여주었다. 조직의 함량 변화에 따른 신호의 변화는 넓은 범위에 걸쳐 직선성을 보여 주었고, Lineweaver-Burk 도시의 직선성은 전극 감응이 효소 촉매작용에 의하여 조절되고 있음을 보였다. 또 감응전류의 pH 의존성 변화는 센서가 두 종류의 동위효소를 포함하고 있음을 암시하였다.

A Novel RFID Dynamic Testing Method Based on Optical Measurement

  • Zhenlu Liu;Xiaolei Yu;Lin Li;Weichun Zhang;Xiao Zhuang;Zhimin Zhao
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.127-137
    • /
    • 2024
  • The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.